State of Wisconsin

2015

Point Beach - Kewaunee

Environmental Radioactivity Survey

Wisconsin Department of Health Services Division of Public Health Bureau of Environmental and Occupational Health Radiation Protection Section P.O. Box 2659 Madison, Wisconsin 53701 P-00442 (04/2017)

State of Wisconsin, Department of Health Services

2015

Point Beach – Kewaunee Environmental Monitoring Survey

Executive Summary

Wisconsin Stat. § 254.41 mandates the Wisconsin Department of Health Services (DHS) to conduct environmental radiation monitoring around the nuclear power facilities that affect Wisconsin. This environmental monitoring report is for the Point Beach and Kewaunee nuclear generating plants for the calendar year January - December 2015 and provides a description and results of this environmental monitoring program.

The DHS environmental monitoring program consists of the collection of various types of samples from the air, water, and terrestrial exposure pathways, sample analysis, and interpretation of the data. The sampling program included samples of air, precipitation, ambient gamma radiation, surface water, fish, shoreline sediment, soil, milk, well water, and vegetation that are collected from selected locations at planned sampling intervals.

Program Summary

For 2015, all sample results from the Point Beach – Kewaunee environmental monitoring area were less than state and federal standards or guidelines.

The DHS environmental monitoring programs provide an ongoing baseline of radioactivity measurements to assess any Wisconsin health concerns from the operation of nuclear power generating facilities in or near Wisconsin or other radiological incidents that may occur within Wisconsin or worldwide. These monitoring programs show the following:

- Environmental radioactivity levels have been trending downward in the time period since the 1950s-1960s atmospheric nuclear testing and such radiological incidents as the Chernobyl nuclear reactor incident of 1986.
- There were no incidents during 2015that required additional environmental monitoring.
- There is no radioactive problem with sampled types of food consumed in Wisconsin and no health problem related to radioactivity for Wisconsin citizens.

DHS's ongoing environmental monitoring programs will continue to provide assurances to the citizens of Wisconsin that the environment surrounding the Point Beach – Kewaunee nuclear power facilities and other monitoring areas will continue to be evaluated.

Table of Contents

	Page Number
Introduction	1
WI DHS Point Beach - Kewaunee Environmental Monitoring Sampling Program	1
Program Modifications	1
Laboratory Services and Quality Assurance	1
Detection Limits	2
Reporting of Sample Analysis Results	2
Results and Discussion for the Wisconsin DHS Point Beach – Kewaunee Environmental Monitoring program	8
References	10
Sample Activity Summary	11
Appendices	37

List of Tables

Table Description	Page Number
Table 1 Sample collection summary and required analyses for 2015.	3
Table 2 Wisconsin DHS Point Beach - Kewaunee environmental monitoring sam sites.	pling 3
Table 3 Missing sample or sample deviation report for 2015.	4
Table 4 Sample activity summary for the Wisconsin DHS Point Beach - Kewaune environmental monitoring.	ee 11
Table 5Wisconsin DHS air particulate gross beta and air iodine (I-131) analysis results from the Point Beach – Kewaunee environmental monitoring program.	14
Table 6 Wisconsin DHS gamma isotopic analysis results from the quarterly composites of air particulate filters collected from the Point Beach – Kewaunee environmental monitoring program.	20
Table 7 Wisconsin DHS TLD network for the Point Beach – Kewaunee environm monitoring program.	ental 22
Table 8 Wisconsin DHS analysis results for precipitation samples collected for thPoint Beach – Kewaunee environmental monitoring program.	e 23
Table 9 Wisconsin DHS analysis results for fish samples collected for the PointBeach – Kewaunee environmental monitoring program.	24
Table 10 Wisconsin DHS analysis results for shoreline sediment samples collected for the Point Beach – Kewaunee environmental monitoring program.	ed 25
Table 11 Wisconsin DHS analysis results for surface water samples collected for Point Beach – Kewaunee environmental monitoring program.	the 26
Table 12 Wisconsin DHS analysis results for well water samples collected for the Point Beach – Kewaunee environmental monitoring program.	2 9
Table 13 Wisconsin DHS analysis results for milk samples collected for the Point Beach – Kewaunee environmental monitoring program.	30
Table 14 Wisconsin DHS analysis results for vegetation samples collected for the Point Beach – Kewaunee environmental monitoring program.	e 33
Table 15 Wisconsin DHS analysis results for soil samples collected for the Point Beach – Kewaunee environmental monitoring program.	35

List of Figures

Figure Descr	Page Number		
•	t Beach - Kewaunee environmental monitoring sampling sites in relatione Kewaunee plant.	'n	6
•	t Beach - Kewaunee environmental monitoring sampling sites in relatione Point Beach plant.	'n	7

State of Wisconsin Department of Health Services

2015

Point Beach - Kewaunee Environmental Radioactivity Survey

Introduction

Wisconsin Stat. § 254.41 mandates the Wisconsin Department of Health Services (DHS) to conduct environmental radiation monitoring around the nuclear power facilities that impact Wisconsin. This environmental monitoring report is for the Point Beach and Kewaunee nuclear generating plants for the calendar year January - December 2015 and provides a description and results of this environmental monitoring program.

DHS Point Beach - Kewaunee Environmental Monitoring Sampling Program

DHS environmental monitoring program consists of the collection of various types of samples from the air, water, and terrestrial exposure pathways. The sampling program included samples of air, precipitation, ambient gamma radiation as measured by thermoluminescent dosimeters (TLD), surface water, fish, shoreline sediment, soil, milk, well water, and vegetation that are collected from selected locations at planned sampling intervals.

Table 1 provides a listing of types of samples collected, collection frequency, sites where samples are collected, number of samples collected, number of samples that were missed or had sample or analysis deviations, and a listing of the required analyses. Table 2 is a listing of sampling sites and includes a description, direction, and distance from the monitored power plants. Table 3 provides an explanation of missing samples or non-routine sample analyses. Figure 1 is a map showing the location of environmental sampling sites in relation to the Kewaunee power plant and Figure 2 is a map showing the location of environmental sampling sites in relation to the Point Beach power plant.

Program Modifications

The only program modification implemented for 2015: Milk collection was suspended by DHS during the last quarter (Oct-Dec) of 2015 due to Wisconsin State Laboratory Hygiene staffing and analysis issues.

Laboratory Services and Quality Assurance

Analysis of the samples is performed under contract with the Wisconsin State Laboratory of Hygiene (WSLH). WSLH maintains a quality assurance program. Analytical procedures provide for routine replicate analyses to verify methods and instrument operation. Traceable sources are used daily to regularly calibrate instrumentation and conduct performance checks. Instrumentation quality control charts are maintained and available upon written request.

WSLH participates in the Environmental Resource Associates' Proficiency Testing program and has performed satisfactorily over the report period. In addition, WSLH participates in the Multi Analytical Performance Evaluation Program (MAPER) for environmental matrix analysis. Proficiency testing results are available from the Wisconsin State Laboratory of Hygiene.

In late 2014, the State Laboratory of Hygiene experienced some staffing issues that impacted their capacity. Starting in 2015, monthly surface water and milk samples were sent to ATI Environmental Inc. for analysis.

ATI Environmental Inc. Midwest Laboratory participated in the National Environmental Laboratory Accreditation Conference Standards (2003) for a variety of radiological analyses during the reporting period.

Detection Limits

Detection limits, required by DHS, are expressed as a lower limit of detection (LLD). The required DHS LLD as indicated in Table 4 under the heading "LLD" is an "a priori" estimate of the capability for detecting an activity concentration by a given measurement system, procedure, and type of sample. Counting statistics of the appropriate instrument background are used to compute the LLD for each specific analysis. Using 4.66 times the standard deviation (s_b) of the instrument background, the LLD for each specific analysis is defined at the 95% Confidence Level.

The LLD for each radioisotope listed in Table 4 has been calculated from the following equation:

4.66 s_b LLD = ------E * V * 2.22 * Y * S * exp(-dt)

Where:

- LLD is the "a priori" lower limit of detection as defined above, as picocuries per unit mass or volume.
 s_b is the standard deviation of the background counting rate or of the counting rate of blank sample as appropriate, as counts per minute.
 - E is the counting efficiency, as counts per disintegration.
- V is the sample size in units of mass or volume.
- 2.22 is the number of disintegrations per minute per picocurie.
 - Y is the fractional radiochemical yield, when applicable.
 - S is the self-absorption correction factor.
 - d is the radioactive decay constant for the particular radionuclide.
 - t is the elapsed time, *for environmental samples*, between sample collection, or end of the sample collection period, and time of counting.

Typical values for E, V, Y and dt have been used to calculate the LLD.

Reporting of Sample Analysis Results

Results for specific analyses are reported as either a "less than" (<) value or an actual activity value. The reporting of results in Table 4 under the heading "Range" and in Tables 5-15 is an "a posteriori" calculation based on the actual analysis performed using the actual sample values for E, V, Y, and dt. Typically the reported "less than" (<) results are lower than the required Wisconsin DHS LLD indicating that the required DHS LLD has been met.

An actual activity value will be accompanied by an uncertainty term for that analysis. The uncertainty term is a plus or minus counting uncertainty term at the 2 sigma (95%) confidence interval and is printed as (+- or +). Examples and explanations of data reporting are:

Example	Nuclide	Activity reported
1	¹³⁷ Cs	< 10 pCi/liter
2	¹³⁷ Cs	15 <u>+</u> 3 pCi/liter

In example 1 we can be 95% confident that the sample activity, if any, is less than the LLD of 10 pCi/liter. In example 2 we can be 95% confident that the actual sample activity is greater than the LLD for that analysis and is between 12 and 18 pCi/liter.

Sample Type	Collection and Frequency	Site Locations	Number of Samples Collected	Number of Sample Deviations	Required Analyses
air particulate	C/W	1, 4, 7, 8, 17, 18	313	5	GA, GB, GI
air iodine	C/W	4, 17, 18	156	3	GI
precipitation	C/BW	1, 4	12	0	GB, H
TLD	G/Q	T1 – T31	124	0	ambient gamma
surface water	G/M	9, 12a, 17	35	1	GA, GB, GI, Sr, H, I
surface water	G/SA	5, 29	4	0	GA, GB, GI, Sr, H
fish	G/Q	10a	5	1	GI
shoreline sediment	G/A	5, 10a, 12a, 12b, 12c, 26, 29	7	0	GA, GB, GI
vegetation	G/SA	1, 2, 3, 4, 5, 7, 8, 14, 17	18	0	GA, GB, GI
soil	G/SA	1, 2, 3, 4, 5, 7, 8, 14, 17	18	0	GA, GB, GI
well water	G/SA	3, 10b, 11, 12d (2 sites)	10	0	GA, GB, H
milk	G/M	24, 27, 28	24	0	GI, I, Sr

Table 1 Sample collection	summary an	d required ana	lyses for 2015

Collection type: C/ = continuous; G/ = grab

Frequency: /W = weekly; /M = monthly; /Q = quarterly; /A = annually; /BW = bi-weekly; /SA = semi-annually Required analyses: GA = gross alpha; GB = gross beta; GI = gamma isotopic; Sr = strontium; I = iodine; H = tritium

Sample site (miles)			Location description
	Kewaunee Point Beach		
PBK-1	5.7 WSW	5.7 WNW	Francar residence
PBK-2	4.9 S	0.7 SSW	Southwest corner property line - Point Beach
PBK-3	4.3 SSW	1.5 W	Two Creeks Town Hall
PBK-4	3.1 S	1.2 NNW	Residence north property line - Point Beach
PBK-5	2.6 S	1.7 NNW	Two Creeks Park; NW corner of property
PBK-7	7.3 SSW	3.3 SSW	WPSC substation, Cty V
PBK-8	0.8 WNW	4.9 N	P Ihlenfeldt farm
PBK-9	4.7 S	0.5 SSE	Point Beach, meteorological tower
PBK-10a	4.2 S	0.1 E	Point Beach, effluent channel
PBK-10b	4.2 S	0.1 E	Point Beach, entrance
PBK-11	3.1 SSW	2.0 NW	Two Creeks International Harvester
PBK-12a	0.1 E	4.2 N	Kewaunee, effluent channel
PBK-12b	0.1 E	4.2 N	Kewaunee, effluent channel, 500 feet N
PBK-12c	0.1 E	4.2 N	Kewaunee, effluent channel, 500 feet S
PBK-12d	0.1 W	4.2 N	Kewaunee, well sites
PBK-14	0.8 W	4.3 N	Nuclear Road – field east of parking lot

Table 2 Wisconsin DHS Point Beach - Kewaunee environmental monitoring sampling sites.

Sample site	Distance and direction (miles)		Location description
	Kewaunee	Point Beach	
PBK-17	11.4 NNE	15.6 N	Green Bay Pumping Station - Rostok
PBK-18	0.1 S	4.1 N	Kewaunee, meteorological tower
PBK-24	2.6 N	6.9 N	L. Struck farm
PBK-26	8.3 NNE	12.6 N	Kewaunee
PBK-27	3.5 SSW	1.7 NW	R. Barta farm
PBK-28	6.0 S	1.8 SSE	Strutz Farms Inc
PBK-29	6.1 SSE	2.1 SSE	Irish Road – at Lake Michigan
PBK-(T1-T8)	4.0 S	0.6 NW	Point Beach ISFSI on outside of perimeter fence
PBK-T9	3.2 S	1.2 NNW	Point Beach north property line, Lakeshore Road
PBK-T10	5.1 S	0.8 SSE	Nuclear Road, 0.6 mile E of Lakeshore Road
PBK-T11	5.1 S	0.9 SSW	Nuclear Road, 0.1 mile E of Lakeshore Road
PBK-T12	5.0 SSW	1.4 WSW	Highway 42, 0.6 mile N of Nuclear Road
PBK-T13	4.0 SSW	1.4 WNW	Highway 42, 0.3 mile N of Tapawingo Road
PBK-T14	3.1 SSW	1.9 NW	Two Creeks Road, 0.1 mile E of Highway 42
PBK-T15	7.6 S	3.3 S	Junction of Lakeshore Road and Ravine Drive
PBK-T16	7.3 SSW	3.3 SW	Cty V, 0.5 mile W of Hwy 42
PBK-T17	5.6 SW	3.8 W	Junction of Saxonbury Road and Tapawingo Road
PBK-T18	3.2 SW	3.3 NW	Zander Road, 0.1 mile W on Tannery Road
PBK-T20	1.4 SW	3.4 NNW	Junction of Cty BB and Ratajcsak Lane
PBK-T28	7.2 NNE	11.4 N	Kewaunee, South on Hwy 42
PBK-T29	12.4 S	8.1 SSW	Two Rivers, Junction of Hwy 42 and 34th Avenue
PBK-T30	16.0 SSW	11.9 SSW	Manitowoc, Hwy 42, Two Rivers Chamber of Commerce
PBK-T31	8.6 SW	5.6 WSW	Mishicot, Cty V, in front of house #653
PBK-T51-T58	0.1 NNW	4.4 N	KPS ISFSI on the inside of the perimeter fence

Table 2 (continued) Wisconsin DHS Point Beach – Kewaunee environmental monitoring sampling sites.

Table 3 Missing sample or sample deviation report for 2015.

Sample type	Date	Site	Explanation
Air particulate	01/05/15	18	Data sample was lost, and not reported
Air particulate	04/08/15	04	Data sample was lost, and not reported
Air particulate		07	No sample taken
Air particulate	11/01/15	1	Data sample was lost, and not reported
Air particulate	12/07/15	1	Data sample was lost, and not reported
Air iodine	01/05/15	18	Data sample was lost, and not reported

Sample type	Date	Site	Explanation
Air iodine	04/08/15	04	Data sample was lost, and not reported
Air iodine	12/30/15	17	Data sample was lost, and not reported
Surface Water	01/15/15	9	Sr-89 and Sr-90 not reported
Surface Water	02/11/15	9	Sample not collected due to safety - ice build-up along shoreline
Surface Water	4/16/15	9	Sr-89 and Sr-90 not reported
Surface Water	01/06/15	12a	Sr-89 and Sr-90 not reported
Surface Water	04/01/15	12a	Sr-89 and Sr-90 not reported
Surface Water	01/15/15	17	Sr-89 and Sr-90 not reported
Surface Water	05/04/15	17	Sr-89, Sr-90, and tritium not reported
Fish	05/09/15	2 nd Quarter	Sample was too small
Fish		3 rd Quarter	No sample taken
Milk	05/13/15	28	Sr-90 not reported
Milk	06/10/15	28	Sr-90 not reported
Milk	08/12/15	28	Tritium not reported
Milk	Oct 2015	28	Milk sampling suspended due to WSLH staffing
Milk	Nov 2015	28	Milk sampling suspended due to WSLH staffing
Milk	Dec 2015	28	Milk sampling suspended due to WSLH staffing
Milk	01/14/15	27	Lower limit of detection not met
Milk	05/13/15	27	Tritium and Sr-90 not reported
Milk	06/10/15	27	Sr-90 not reported
Milk	08/12/15	27	Gamma spectrometry not reported
Milk	Oct 2015	27	Milk sampling suspended due to WSLH staffing
Milk	Nov 2015	27	Milk sampling suspended due to WSLH staffing
Milk	Dec 2015	27	Milk sampling suspended due to WSLH staffing
Milk	01/14/15	24	Tritium lower limit of detection not met
Milk	06/10/15	24	Sr-90 not reported
Milk	08/12/15	24	Gamma spectrometry not reported
Milk	Oct 2015	24	Milk sampling suspended due to WSLH staffing
Milk	Nov 2015	24	Milk sampling suspended due to WSLH staffing
Milk	Dec 2015	24	Milk sampling suspended due to WSLH staffing

Table 3 (continued). Missing sample or deviation report for 2015.

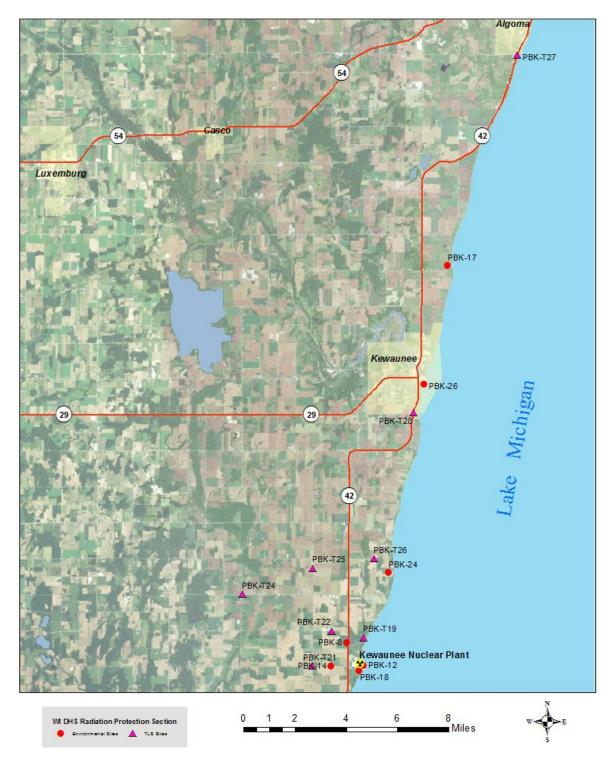


Figure 1 Point Beach - Kewaunee environmental monitoring sampling sites in relation to the Kewaunee plant.

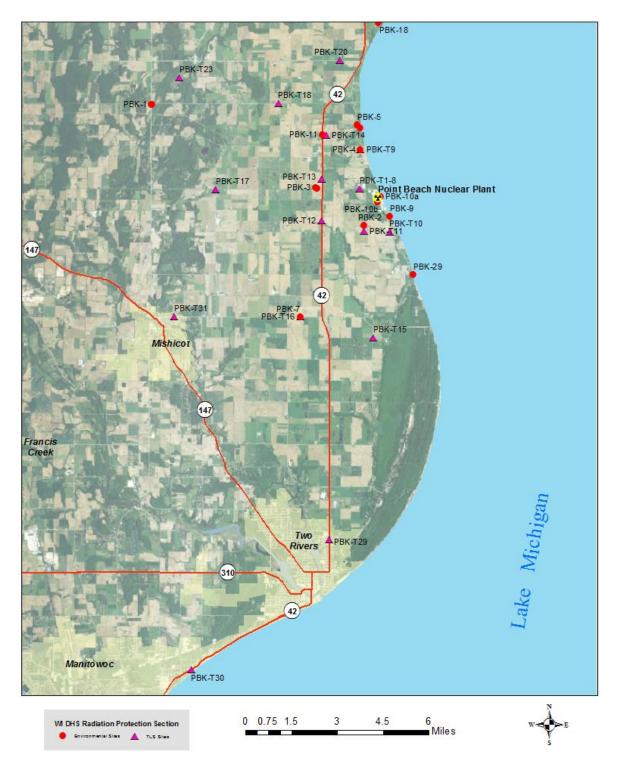


Figure 2 Point Beach - Kewaunee environmental monitoring sampling sites in relation to the Point Beach plant.

Results and Discussion for the Wisconsin DHS Point Beach – Kewaunee Environmental Monitoring program

Air Particulate

Table 4 provides a summary of reported activities by DHS for air particulate samples. Tables 5–6 provide results from the individual sample analyses.

From the gross beta activities listed in Table 5, it may be noted that there were no significant differences due to distance away from either the Kewaunee or the Point Beach facility. Although the gross beta activity was above the LLD, it was similar to previous years; and the increase in gross beta activity could not be attributed to the Kewaunee or the Point Beach operation.

The gamma isotopic analysis of the quarterly air particulate filter composites detected only small amounts of the radioisotopes listed in Table 4. All other radioisotopes were below their respective LLD. Beryllium-7 (⁷Be), detected in all composites, is a naturally occurring radioisotope that is constantly produced through nuclear reactions between cosmic rays and nuclei in the atmosphere and was detected in air composites from other areas of the state.

Air Iodine

Table 4 provides a summary of reported activities by DHS for air iodine samples. Table 5 provides results from the individual sample analyses.

Most air iodine measurements were below the LLD of 0.07 pCi/m³. Sample analysis indicated that neither the Kewaunee nor the Point Beach nuclear generating facilities influenced air iodine levels during the reporting period.

Ambient Gamma Radiation – Thermoluminescent dosimeters (TLD)

Table 4 provides a summary of reported activities by DHS for ambient gamma radiation. Table 7 provides results from the individual sample analyses.

Analysis of samples taken at varying distances from either the Kewaunee or Point Beach nuclear facilities did not yield significant differences in exposure for sites PBK-T9 through PBK-T31. Excluding the sites around the perimeter of the Point Beach ISFSI (T1 – T8), the average quarterly exposure from the remaining 23 sites was 14.1 ± 2.1 milliroentgens. The average quarterly exposure for 2015 was at background levels and was comparable to other areas in Wisconsin. Influence by the Kewaunee or the Point Beach nuclear generating facilities on air quality is not evident from ambient gamma radiation analysis.

Precipitation

Table 4 provides a summary of reported activities by DHS for precipitation. Table 8 provides results from the individual sample analyses.

The gross beta activity in precipitation was within the normal range of activity when compared to previous years' data. Influence by the Kewaunee or Point Beach nuclear generating facilities on air quality is not evident from precipitation sample analysis.

Fish

Table 4 provides a summary of reported activities by DHS for fish samples. Table 9 provides results from the individual sample analyses. The fish samples showed no unusual activities.

Shoreline Sediment

Table 4 provides a summary of reported activities by DHS for shoreline sediment samples. Table 10 provides results from the individual sample analyses.

Analysis of the shoreline samples showed no unusual activities. All samples indicated naturally occurring potassium-40 (⁴⁰K). Previous years' reported activities also detected cesium-137 (¹³⁷Cs), which was probably attributable to residual fallout from previous atmospheric nuclear weapons testing. Samples commonly detect naturally occurring radioisotopes from the uranium-238 (²³⁸U) and thorium-232 (²³²Th) decay series, but they have not been quantified or reported. Sample analysis indicates that neither the Kewaunee nor the Point Beach nuclear generating facilities influenced shoreline sediment activity levels.

Surface Water

Table 4 provides a summary of reported activities by DHS for surface water samples. Table 11 provides results from individual sample analyses. During this reporting period, samples were sent to ATI Environmental Inc. Midwest Laboratory as a result of Wisconsin State Lab of Hygiene's inability to analyze strontium.

From the gamma isotopic analysis, all radioisotopes were below their respective LLD. All reported activities for gross beta, gross alpha, and tritium (³H) were at background levels and were comparable to data from previous years. The surface water samples uniformly show activities well below state or federal standards. Influence by the Kewaunee or Point Beach nuclear generating facilities is not evident from surface water sample analysis.

Well Water

Table 4 provides a summary of reported activities by DHS for well water samples. Table 12 results from the individual sample analyses.

The well water samples showed no unusual gross alpha and gross beta activities and all activities for tritium (³H) were less than its LLD. The measured activities were all below state and federal standards. Influence by the Kewaunee or Point Beach nuclear generating facilities is not evident from well water sample analysis.

Milk

Table 4 provides a summary of reported activities by DHS for milk samples. Table 13 results from the individual sample analyses. During this reporting period, samples were sent to ATI Environmental Inc. Midwest Laboratory as a result of Wisconsin State Lab of Hygiene's inability to analyze strontium.

The analysis of milk samples detected no unusual activities. Naturally occurring potassium-40 (⁴⁰K) was detected in all samples. The detected activities for strontium-90 (⁹⁰Sr), attributable to residual fallout from previous atmospheric nuclear weapons testing, were also detected in previous years at similar activity levels. Influence by the Kewaunee or Point Beach nuclear generating facilities is not evident from milk sample analysis.

Vegetation

Table 4 provides a summary of reported activities by DHS for vegetation samples. Table 14 provides results from the individual sample analyses.

Analysis of the vegetation samples showed no unusual activities. The gamma isotopic analysis detected only small amounts of naturally occurring potassium-40 (⁴⁰K) and beryllium-7 (⁷Be) listed in

Table 4. Influence by the Kewaunee or Point Beach nuclear generating facilities is not evident from vegetation sample analysis.

Soil

Table 4 provides a summary of reported activities by DHS for soil samples. Table 15 provides results from the individual sample analyses.

Analysis of the soil samples showed no unusual activities. Naturally occurring potassium-40 (⁴⁰K) was detected in all samples. The reported activities for cesium-137 (¹³⁷Cs) were also detected in previous years and are probably attributable to residual fallout from previous atmospheric nuclear weapons testing. Naturally occurring radioisotopes from the uranium-238 (²³⁸U) and thorium-232 (²³²Th) decay series are commonly detected but have not been quantified or reported.

Point Beach Independent Spent Fuel Storage Installation

Table 7 provides a summary of reported activities by DHS for ambient gamma radiation monitored in the vicinity of the Point Beach Independent Spent Fuel Storage Installation (ISFSI).

Thermoluminescent dosimeter (TLD) measurements detected ambient gamma exposure levels greater than background at all sites (T1-T8) located on the Point Beach ISFSI perimeter fence closest to the ventilated storage casks. TLD measurements did not detect an increase in ambient gamma exposure levels at sites T9 - T14 (0.8 - 1.9 miles from the Point Beach ISFSI) or at sites T15 - T31 (greater than 2 miles from the Point Beach ISFSI). These readings are consistent with previous years' data. The average standard quarterly ambient gamma exposure for 2015 for sites T9 - T31 was 14.1 ± 2.1 milliroentgens and for sites T1 - T8 varied from 17.3 - 57.4 milliroentgens per standard quarter depending on the distance from the storage casks.

Dose to an Average Individual

Federal regulations 10 CFR 20, 10 CFR 50 Appendix I, and 40 CFR 190 restrict the annual exposure of the population from all parts of the nuclear fuel cycle, including nuclear power plants. Doses resulting from gaseous and liquid effluent releases from the Point Beach or Kewaunee nuclear generating facilities are less than the limits as stated in these federal regulations.

The DHS limit for permissible levels of radiation exposure from external sources in unrestricted areas is defined in the Wis. Admin. Code § DHS 157.23. Doses resulting from gaseous and liquid effluent releases from the Point Beach or Kewaunee nuclear generating facilities are less than the limits as stated in Wis. Admin. Code § DHS 157.23.

References

Wisconsin Admin. Code § DHS 157.23

State of Wisconsin, "FINAL ENVIRONMENTAL IMPACT STATEMENT, Point Beach Nuclear Power Plant Projects Proposed by Wisconsin Electric Power Company, Temporary Storage of Spent Nuclear Fuel in Dry Casks, PSC Docket 6630-CE-197, Unit 2 Steam Generator Replacement, PSC Docket 6630-CE-209, AUGUST 1994."

U.S. Environmental Protection Agency, Environmental Radiation Requirements for Normal Operations of Activities in the Uranium Fuel Cycle, EPA 520/4-76-016, 40 CFR Part 190, November 1976.

U.S. Nuclear Regulatory Commission, Title 10, Part 20.

U.S. Nuclear Regulatory Commission, Title 10, Part 50, Appendix I.

Sample Activity Summary

Sample type (units)	LLD	Number of samples ^a	Analysis	Range
Air particulate (pCi/m ³)	0.005	309 / 306	gross beta gamma isotopic	0.001 - 0.124
	0.020	24 / 24	Be-7	< 0.067
	0.002	24 / 0	Mn-54	< 0.0004
	0.002	24 / 0	Co-58	< 0.0004
	0.005	24 / 0	Fe-59	< 0.0008
	0.002	24 / 0	Co-60	< 0.0001 - 0.0005
	0.005	24 / 0	Zn-65	< 0.0009
	0.002	24 / 0	Nb-95	< 0.0001 - 0.0014
	0.005	24 / 0	Zr-95	< 0.0006
	0.002	24 / 0	Ru-103	< 0.0004
	0.015	24 / 0	Ru-106	< 0.0034
	0.020	24 / 0	I-131	< 0.0067
	0.002	24 / 0	Cs-134	< 0.0004
	0.002	24 / 0	Cs-137	< 0.0010
	0.030	24 / 0	Ba-140	< 0.0030
	0.020	24 / 0	La-140	< 0.0012
	0.002	24 / 0	Ce-141	< 0.0007
	0.005	24 / 0	Ce-144	< 0.0018
Air iodine (pCi/m ³)	0.07	154 / 2	I-131	0.005 - 0.232
Surface water	3.0	39 / 0	gross alpha (sol)	< 0.5 - 2.2
(pCi/liter)	3.0	39 / 1	gross beta (sol)	< 0.9 - 3.2
	3.0	39 / 0	gross alpha (insol)	< 0.7 - 1.2
	3.0	39 / 0	gross beta (insol)	< 1.1 - 1.3
	0.5	19 / 4	I-131	< 0.7
	300	18 / 0	H-3	< 211
	2.0	18 / 0	Sr-89	< 1
	1.0	18 / 0	Sr-90	< 0.2
			gamma isotopic	
	15	36 / 0	Mn-54	< 8.6
	15	36 / 0	Co-58	< 7.1
	30	36 / 0	Fe-59	< 14.8
	15	36 / 0	Co-60	< 8.2
	30	36 / 0	Zn-65	< 16.4
	15	36 / 0	Nb-95	< 7.7
	30	36 / 0	Zr-95	< 12.8
	15	36 / 0	I-131	< 8.6
	15	36 / 0	Cs-134	< 6.4
	15	36 / 0	Cs-137	< 6.9
	60	36 / 0	Ba-140	< 30.1
	15	36 / 0	La-140	< 11.6

Table 4 Sample activity summary for the Wisconsin DHS Point Beach - Kewaunee environmental monitoring.

monitoring program Sample type (units)	LLD	Number of samples ^a	Analysis	Range
-		Number of Samples	-	itange
Fish (pCi/kg wet)	800	4 / 4	gamma isotopic K-40	1520 – 2820
(pointg wor)	50	4 / 0	Mn-54	< 11
	60	4/0	Co-58	< 10
	130	4/0	Fe-59	< 31
	70	4 / 0	Co-60	< 14
	130	4/0	Zn-65	< 26
	50	4/0	Nb-95	< 15
	100	4 / 0	Zr-95	< 19
	50	4 / 0	Cs-134	< 7
	60	4 / 0	Cs-137	< 12 - 17
	00	470	03-137	< 12 - 17
Shoreline sediment	8000	7 / 0	gross alpha	< 4300
(pCi/kg dry)	6000	7 / 1	gross beta	2800 - 6840
			gamma isotopic	
	800	7 / 7	K-40	3200 - 6020
	60	7/0	Mn-54	< 15
	90	7 / 0	Co-58	< 29
	600	7/0	Fe-59	< 116
	90	7/0	Co-60	< 17
	300	7/0	Zn-65	< 44
	100	7 / 0	Nb-95	< 62
	200	7/0	Zr-95	< 49
	80	7 / 0	Cs-134	< 12
	80	7 / 0	Cs-137	< 13 – 22
Vegetation	5000	18 / 0	gross alpha	< 2420
(pCi/kg wet)	4000	18 / 11	gross beta	1740 - 7740
			gamma isotopic	
	600	18 / 16	Be-7	261 - 4980
	2000	18 / 18	K-40	3890 - 7390
	90	18 / 0	Mn-54	< 32
	100	18 / 0	Co-58	< 32
	200	18 / 0	Fe-59	< 80
	100	18 / 0	Co-60	< 41
	250	18 / 0	Zn-65	< 85
	100	18 / 0	Nb-95	< 39
	200	18 / 0	Zr-95	< 62
	80	18 / 0	I-131	< 76
	80	18 / 0	Cs-134	< 34
	90	18 / 0	Cs-137	< 43
	350	18 / 0	Ba-140	< 181
	100	18 / 0	La-140	< 79

Table 4 (continued). Sample activity summary for the Wisconsin DHS Point Beach - Kewaunee environmental monitoring program.

Sample type (units)	LLD	Number of samples ^a	Analysis	Range
				·
Soil	8000	18 / 10	gross alpha	1200 - 13200
(pCi/kg dry)	6000	18 / 17	gross beta	< 1360 - 21600
			gamma isotopic	
	80	18 / 1	Cs-134	< 25 - 127
	80	18 / 14	Cs-137	< 42 - 277
	90	18 / 0	Co-58	< 45
	90	18 / 0	Co-60	< 31
	600	18 / 0	Fe-59	< 184
	60	18 / 0	Mn-54	< 31
	100	18 / 0	Nb-95	< 98
	800	18 / 18	K-40	13000 - 22700
	300	18 / 0	Zn-65	< 76
	250	18 / 0	Zr-95	< 89
Milk	0.5	13 / 5	I-131	<0.9
(pCi/liter)	1.0	22 / 1	Sr-90	<0.4 - 1.29
			gamma isotopic	
	500	24 / 24	K-40	1060-1560
	15	24 / 0	Mn-54	<11
	15	24 / 0	Co-58	<11
	40	24 / 0	Fe-59	<23
	15	24 / 1	Co-60	<15
	40	24 / 0	Zn-65	<24
	15	24 / 0	Nb-95	<10
	40	24 / 0	Zr-95	<19
	15	24 / 0	I-131	<14
	15	24 / 0	Cs-134	<12
	15	24 / 0	Cs-137	<13
	60	24 / 0	Ba-140	<44
	15	24 / 0	La-140	<14
Well water	5.0	10 / 0	gross alpha	< 2.7 – 3.7
(pCi/liter)	3.0	10 / 4	gross beta	< 3.5
	300	10 / 0	H-3	< 210
Precipitation	1.5	12/0	gross beta	0.04-0.63
(nCi/m ²)	300	12 / 0	H-3	< 30
ambient radiation (mR/Std Qtr)	1.0 ^c	124 / 124	exposure	8.9 – 57.4

Table 4 (continued). Sample activity summary for the Wisconsin DHS Point Beach - Kewaunee environmental monitoring program.

d - Samples not analyzed due to laboratory error and delays, see result and discussion section.

Site: PBK-1

Collection	Volume			Volume	
date	m ³	Air Particulate	Collection date	m ³	Air Particulate
01/07/15	622	0.029 ± 0.002	07/08/15	521	0.016 ± 0.002
01/14/15	549	0.024 ± 0.003	07/15/15	514	0.011 ± 0.002
01/21/15	552	0.028 ± 0.003	07/22/15	525	0.012 ± 0.002
01/28/15	552	0.018 ± 0.002	07/29/15	*c	0.020 ± 0.002
02/04/15	542	0.017 ± 0.002	08/05/15	528	0.012 ± 0.002
02/11/15	549	0.032 ± 0.003	08/12/15	532	0.014 ± 0.002
02/18/15	528	0.027 ± 0.003	08/19/15	528	0.028 ± 0.003
02/25/15	545	0.048 ± 0.003	08/26/15	542	$0.012 \ \pm \ 0.002$
03/04/15	539	0.026 ± 0.003	09/02/15	521	0.030 ± 0.003
03/11/15	542	0.020 ± 0.002	09/09/15	525	0.029 ± 0.003
03/18/15	535	0.016 ± 0.002	09/16/15	528	0.020 ± 0.002
03/25/15	542	0.015 ± 0.002	09/23/15	532	0.020 ± 0.002
04/01/15	542	0.012 ± 0.002	09/30/15	525	0.025 ± 0.003
1st Qtr			3rd Qtr		
mean +- s.d.		0.224 ± 0.010	mean +- s.d.		0.019 ± 0.007
04/08/15	539	0.016 ± 0.002	10/14/15	556	0.019 ± 0.002
04/15/15	528	0.016 ± 0.002	10/21/15	549	0.019 ± 0.002
04/22/15	532	0.011 ± 0.002	10/28/15	552	0.015 ± 0.002
04/29/15	535	0.011 ± 0.002	*d	*d	*d ± *d
05/06/15	532	0.013 ± 0.002	11/04/15	552	0.020 ± 0.002
05/13/15	518	0.011 ± 0.002	11/11/15	563	0.024 ± 0.002
05/20/15	521	0.011 ± 0.002	11/18/15	552	0.026 ± 0.003
05/27/15	514	0.017 ± 0.002	11/24/15	480	0.015 ± 0.002
06/03/15	518	0.011 ± 0.002	12/02/15	636	0.021 ± 0.002
06/10/15	511	0.014 ± 0.002	*d	*d	*d ± *d
06/17/15	504	0.009 ± 0.002	12/16/15	546	0.021 ± 0.002
06/24/15	507	0.011 ± 0.002	12/22/15	476	0.023 ± 0.003
07/01/15	518	0.014 ± 0.002	12/30/15	636	0.021 ± 0.002
2nd Qtr			4th Qtr		
mean +- s.d.		0.014 ± 0.002	mean +- s.d.		0.020 ± 0.003

*a – Laboratory error

*b - Error in recording data in the field

*c = The original data sheet was not returned

 Table 5 (continued).
 Wisconsin DHS air particulate gross beta and air iodine (I-131) analysis results from the Point Beach – Kewaunee environmental monitoring program.

Measurements in	units of	f pCi/m`
-----------------	----------	----------

Site: PBK-4

Collection	Volume			Collectio	on Vo	blume	
date	m ³	Air particulate	Air iodine	date	m³	Air particulate	Air iodine
01/05/15	534	0.022 ± 0.003	< 0.034	07/08/15	726	0.010 ± 0.002	< 0.010
01/14/15	591	0.022 ± 0.002	< 0.010	07/13/15	395	0.012 ± 0.003	< 0.013
01/19/15	370	0.031 ± 0.004	< 0.016	07/20/15	568	0.010 ± 0.002	< 0.025
01/26/15	510	0.017 ± 0.002	< 0.012	07/27/15	583	0.016 ± 0.002	< 0.007
02/03/15	557	0.015 ± 0.002	< 0.012	08/03/15	575	0.016 ± 0.002	< 0.015
02/11/15	584	0.028 ± 0.003	< 0.013	08/12/15	743	0.011 ± 0.002	< 0.009
02/16/15	336	0.023 ± 0.004	< 0.027	08/17/15	415	0.028 ± 0.003	< 0.016
02/24/15	541	0.041 ± 0.003	< 0.011	08/24/15	571	0.015 ± 0.002	< 0.008
03/02/15	423	0.024 ± 0.003	< 0.017	08/31/15	562	0.012 ± 0.002	< 0.020
03/11/15	393	0.004 ± 0.003	< 0.007	09/09/15	740	0.026 ± 0.002	< 0.015
03/16/15	393	0.014 ± 0.002	< 0.232	09/14/15	396	0.014 ± 0.003	< 0.027
03/23/15	534	0.015 ± 0.002	< 0.014	09/22/15	637	$0.019 ~\pm~ 0.002$	< 0.013
03/30/15	523	0.013 ± 0.002	< 0.011	09/28/15	479	0.025 ± 0.003	< 0.027
1st Qtr				3rd Qtr			
mean +- s.d.		0.021 ± 0.009	< 0.032	mean +- s.d.		0.016 ± 0.006	< 0.016
04/08/15	692	*d ± *d	< *a	10/05/15	523	0.011 ± 0.002	< 0.027
04/13/15	384	0.015 ± 0.015	< 0.019	10/12/15	541	0.017 ± 0.002	< 0.018
04/20/15	554	0.010 ± 0.010	< 0.012	10/20/15	596	0.014 ± 0.002	< 0.016
04/27/15	528	0.010 ± 0.010	< 0.013	10/28/15	590	0.018 ± 0.002	< 0.059
05/04/15	554	0.009 ± 0.009	< 0.010	11/02/15	371	0.011 ± 0.003	< 0.018
05/13/15	707	0.008 ± 0.008	< 0.006	11/10/15	595	0.022 ± 0.002	< 0.029
05/18/15	385	0.013 ± 0.013	< 0.016	11/16/15	433	0.022 ± 0.003	< 0.021
05/27/15	700	0.011 ± 0.011	< 0.010	11/24/15	565	0.020 ± 0.002	< 0.026
06/01/15	390	0.008 ± 0.008	< 0.021	11/30/15	432	0.018 ± 0.003	< 0.013
06/10/15	711	0.012 ± 0.012	< 0.012	12/08/15	570	0.033 ± 0.003	< 0.082
06/15/15	397	0.009 ± 0.009	< 0.027	12/15/15	506	0.027 ± 0.003	< 0.021
06/23/15	645	0.008 ± 0.008	< 0.013	12/22/15	484	0.020 ± 0.003	< 0.033
06/29/15	477	0.012 ± 0.012	< 0.012	12/28/15	416	0.021 ± 0.003	< 0.024
2nd Qtr				4th Qtr			
mean +- s.d.		0.002 ± 0.015	< 0.014	mean +- s.d.		0.020 ± 0.006	< 0.030

*a - Laboratory error

*b - Error in recording data in the field

*c = The original data sheet was not returned

Measurements in units of $p\text{Ci}/\text{m}^3$

Site: PBK-7					
Collection	Volume		Collection	Volume	
date	m ³	Air particulate	date	m³	Air particulate
01/07/15	655	0.027 ± 0.002	07/08/15	*c	0.014 ± 0.002
01/14/15	580	0.022 ± 0.002	07/15/15	507	0.124 ± 0.002
01/21/15	558	0.018 ± 0.002	07/22/15	510	0.013 ± 0.002
01/28/15	556	0.016 ± 0.002	07/29/15	507	0.019 ± 0.003
02/04/15	565	0.017 ± 0.002	08/05/15	502	0.011 ± 0.002
02/11/15	580	0.028 ± 0.003	08/12/15	522	0.014 ± 0.002
02/18/15	558	0.026 ± 0.003	08/19/15	488	0.029 ± 0.003
02/25/15	568	0.044 ± 0.003	08/26/15	519	$0.015 \ \pm \ 0.002$
03/04/15	580	0.022 ± 0.002	09/02/15	510	$0.027 \ \pm \ 0.003$
03/11/15	534	0.016 ± 0.002	09/02/15	510	0.030 ± 0.003
03/18/15	548	0.017 ± 0.002	09/16/15	510	0.019 ± 0.002
03/25/15	541	0.018 ± 0.002	09/23/15	510	$0.020 \ \pm \ 0.002$
			09/30/15	502	0.023 ± 0.003
1st Qtr			3rd Qtr		
mean +- s.d.		0.022 ± 0.008	mean +- s.d.		0.027 ± 0.030
04/01/15	546	0.016 ± 0.002	10/07/15	507	0.012 ± 0.002
04/08/15	553	0.016 ± 0.002	10/14/15	517	0.017 ± 0.002
04/15/15	546	0.013 ± 0.002	10/21/15	512	0.018 ± 0.002
04/22/15	522	0.009 ± 0.002	10/28/15	512	0.018 ± 0.002
04/29/15	534	0.011 ± 0.002	11/04/15	522	0.018 ± 0.002
05/06/15	534	0.011 ± 0.002	11/11/15	519	$0.025 \ \pm \ 0.003$
05/13/15	534	0.010 ± 0.002	11/18/15	515	0.028 ± 0.003
05/20/15	529	0.012 ± 0.002	11/24/15	461	0.018 ± 0.003
05/27/15	527	0.016 ± 0.002	12/02/15	587	0.022 ± 0.002
*a	*а	*a *a	12/09/15	517	0.046 ± 0.003
06/10/15	519	$0.012 \hspace{0.1in} \pm \hspace{0.1in} 0.002$	12/16/15	515	0.023 ± 0.003
06/17/15	507	0.007 ± 0.002	12/22/15	449	0.022 ± 0.003
06/24/15	512	0.011 ± 0.002	12/30/15	595	0.020 ± 0.002
			10/07/15	507	0.012 0.002
2nd Qtr			4th Qtr		
mean +- s.d.		0.012 ± 0.003	mean +- s.d.		0.022 ± 0.008
*a – Laboratory err	or				

*b – Error in recording data in the field

*c = The original data sheet was not returned

Measurements in units of pCi/m³

Site: PBK-8

Collection	Volume		Collection	Volume	
date	m ³	Air particulate	date	m³	Air particulate
01/06/15	587	0.030 ± 0.003	07/07/15	507	0.014 ± 0.002
01/13/15	596	0.026 ± 0.002	07/14/15	482	0.010 ± 0.002
01/20/15	580	0.031 ± 0.003	07/21/15	498	0.012 ± 0.002
01/27/15	568	0.020 ± 0.002	07/28/15	523	0.021 ± 0.003
02/03/15	587	0.020 ± 0.002	08/04/15	523	0.017 ± 0.002
02/10/15	596	0.031 ± 0.003	08/11/15	504	0.014 ± 0.002
02/17/15	596	0.027 ± 0.002	08/11/15	517	0.029 ± 0.003
02/24/15	301	0.096 ± 0.006	08/25/15	473	0.018 ± 0.003
03/03/15	637	0.027 ± 0.002	09/01/15	558	0.021 ± 0.002
03/10/15	603	0.020 ± 0.002	09/08/15	501	0.037 ± 0.003
03/17/15	590	0.018 ± 0.002	09/15/15	533	0.019 ± 0.002
03/24/15	612	0.020 ± 0.002	09/22/15	495	0.023 ± 0.003
03/31/15	552	0.017 ± 0.002	09/29/15	457	0.031 ± 0.003
1st Qtr			3rd Qtr		
mean +- s.d.		0.029 ± 0.021	mean +- s.d.		0.019 ± 0.008
04/07/15	200	0.023 ± 0.005	10/06/15	*c	0.011 ± 0.002
04/14/15	390	0.019 ± 0.003	10/13/15	*c	0.021 ± 0.002
04/21/15	593	0.011 ± 0.002	10/20/15	561	0.015 ± 0.002
04/28/15	577	0.011 ± 0.002	10/27/15	507	0.023 ± 0.003
05/05/15	596	0.012 ± 0.002	11/03/15	495	0.020 ± 0.003
05/12/15	593	0.010 ± 0.002	11/10/15	523	0.027 ± 0.003
05/19/15	571	0.011 ± 0.002	11/17/15	514	0.032 ± 0.003
05/26/15	596	0.014 ± 0.002	11/24/15	463	0.027 ± 0.003
06/02/15	584	0.011 ± 0.002	12/01/15	546	0.025 ± 0.003
06/09/15	568	0.013 ± 0.002	12/08/15	523	0.047 ± 0.003
06/16/15	542	0.009 ± 0.002	12/15/15	438	0.043 ± 0.004
06/23/15	523	0.010 ± 0.002	12/22/15	482	0.025 ± 0.003
06/30/15	511	0.013 ± 0.002	12/29/15	438	0.031 ± 0.003
2nd Qtr			4th Qtr		
mean +- s.d.		0.013 + 0.004	mean +- s.d.		0.026 + 0.027
					0.02

*a - Laboratory error

*b – Error in recording data in the field

*c = The original data sheet was not returned

Measurements in units of pCi/m³

Site: PBK-17

Collection	Volume						Collection	Volume					
date	m³	Air pa	artic	ulate	Air iodi	ne	date	m³	Air p	artic	ulate	Air	iodine
01/09/15	582	0.026	±	0.002	<	0.010	07/02/15	529	0.012	±	0.002	<	0.025
01/16/15	562	0.031	±	0.003	<	0.016	07/10/15	89	0.087	±	0.014	<	0.014
01/23/15	560	0.021	±	0.002	<	0.012	07/16/15	262	0.014	±	0.004	<	0.025
1/301/15	561	0.016	±	0.002	<	0.024	07/23/15	505	0.014	±	0.002	<	0.025
02/06/15	571	0.023	±	0.002	<	0.018	07/30/15	507	0.020	±	0.003	<	0.025
02/13/15	562	0.029	±	0.003	<	0.023	08/07/15	587	0.009	±	0.002	<	0.027
02/19/15	498	0.029	±	0.003	<	0.013	08/14/15	512	0.019	±	0.002	<	0.046
02/27/15	640	0.043	±	0.003	<	0.016	08/21/15	516	0.002	±	0.002	<	0.029
03/06/15	570	0.022	±	0.002	<	0.011	08/28/15	521	0.014	±	0.002	<	0.027
03/13/15	549	0.017	±	0.002	<	0.013	09/03/15	456	0.032	±	0.003	<	0.030
03/19/15	470	0.015	±	0.002	<	0.015	09/11/15	577	0.022	±	0.002	<	0.023
03/27/15	634	0.018	±	0.002	<	0.016	09/17/15	450	0.022	±	0.003	<	0.038
							09/25/15	596	0.018	±	0.002	<	0.044
1st Qtr							3rd Qtr						
mean +- s.d.		0.024	±	0.008	<	0.016	mean +- s.d.		0.022	±	0.021	<	0.027
04/02/15	476	0.014	±	0.002	<	0.016	10/01/15	433	0.023	±	0.003	<	0.033
04/10/15	628	0.015	±	0.002	<	0.012	10/09/15	601	0.011	±	0.002	<	0.026
04/17/15	547	0.013	±	0.002	<	0.016	10/15/15	462	0.017	±	0.003	<	0.027
04/24/15	550	0.007	±	0.002	<	0.013	10/22/15	726	0.016	±	0.002	<	0.024
05/01/15	547	0.011	±	0.002	<	0.010	10/30/15	404	0.015	±	0.003	<	0.043
05/08/15	537	0.017	±	0.002	<	0.014	11/06/15	536	0.024	±	0.003	<	0.033
05/15/15	545	0.009	±	0.002	<	0.011	11/19/15	1001	0.023	±	0.002	<	0.008
05/22/15	537	0.010	±	0.002	<	0.013	11/25/15	462	0.017	±	0.003	<	0.018
05/29/15	538	0.016	±	0.002	<	0.019	12/03/15	624	0.023	±	0.002	<	0.034
06/05/15	532	0.010	±	0.002	<	0.009	12/11/15	612	0.046	±	0.003	<	0.041
06/12/15	534	0.012	±	0.002	<	0.029	12/17/15	460	0.011	±	0.002	<	0.033
06/18/15	528	0.006	±	0.002	<	0.016	12/23/15	468	0.023	±	0.003	<	0.029
06/25/15	455	0.012	±	0.002	<	0.014	12/30/15	555	0.001	±	0.002	<	*d
2nd Qtr							4th Qtr						
mean +- s.d.		0.013	±	0.004	<	0.018	mean +- s.d.		0.015	±	0.003	<	0.018

*a - Laboratory error

*b - Error in recording data in the field

*c = The original data sheet was not returned

Site: PBK-18

Collection	Volume				Collection	Volume	•				
date	m³	Air parti	culate	Air iodine	date	m ³	Air p	artic	ulate	Air i	odine
01/05/15	677	*d ±	*d	< *d	07/08/15	814	0.118	±	0.002	<	0.010
01/14/15	877	0.021 ±	0.002	< 0.007	07/13/15	475	0.014	±	0.003	<	0.015
01/19/15	479	0.029 ±	0.003	< 0.020	07/20/15	602	0.010	±	0.002	<	0.022
01/26/15	683	0.017 ±	0.002	< 0.009	07/27/15	671	0.016	±	0.002	<	0.010
02/03/15	766	0.016 ±	0.002	< 0.007	08/03/15	617	0.014	±	0.002	<	0.010
02/11/15	771	0.029 ±	0.002	< 0.013	08/12/15	796	0.010	±	0.002	<	0.019
02/16/15	485	0.023 ±	0.003	< 0.018	08/17/15	439	0.032	±	0.003	<	0.024
02/24/15	778	0.039 ±	0.002	< 0.006	08/24/15	628	0.010	±	0.002	<	0.011
03/02/15	580	0.024 ±	0.002	< 0.014	08/31/15	623	0.012	±	0.002	<	0.018
03/11/15	861	0.016 ±	0.002	< 0.005	09/09/15	794	0.028	±	0.002	<	0.014
03/16/15	472	0.014 ±	0.002	< 0.012	09/14/15	440	0.014	±	0.003	<	0.025
03/23/15	664	0.017 ±	0.002	< 0.015	09/22/15	725	0.019	±	0.002	<	0.016
03/30/15	670	0.012 ±	0.002	< 0.012	09/28/15	539	0.022	±	0.002	<	0.019
1st Qtr					3rd Qtr						
mean +- s.d.		0.021 ±	0.008	< 0.011	mean +- s.d.		0.017	±	0.007	< (0.017
04/08/15	852	0.015 ±	0.002	< 0.009	10/05/15	641	0.011	±	0.002	<	0.013
04/13/15	464	0.016 ±	0.003	< 0.015	10/12/15	634	0.019	±	0.002	<	0.014
04/20/15	658	0.009 ±	0.002	< 0.015	10/20/15	734	0.012	±	0.002	<	0.040
04/27/15	660	0.007 ±	0.002	< 0.009	10/28/15	731	0.018	±	0.002	<	0.015
05/04/15	649	0.010 ±	0.002	< 0.013	11/02/15	464	0.012	±	0.002	<	0.022
05/13/15	833	0.009 ±	0.001	< 0.006	11/10/15	735	0.024	±	0.002	<	0.019
05/18/15	454	0.013 ±	0.002	< 0.013	11/16/15	551	0.024	±	0.003	<	0.020
05/27/15	831	0.012 ±	0.002	< 0.010	11/24/15	741	0.019	±	0.002	<	0.008
06/01/15	458	0.009 ±	0.002	< 0.020	11/30/15	561	0.019	±	0.002	<	0.022
06/10/15	817	0.013 ±	0.002	< 0.016	12/08/15	742	0.035	±	0.002	<	0.017
06/15/15	455	0.009 ±	0.002	< 0.023	12/15/15	653	0.026	±	0.002	<	0.026
06/23/15	734	0.008 ±	0.002	< 0.012	12/22/15	649	0.021	±	0.002	<	0.016
06/29/15	528	0.012 ±	0.002	< 0.011	12/28/15	555	0.018	±	0.002	<	0.035
2nd Qtr					4th Qtr						
mean +- s.d.		0.019 ±	0.029	< 0.013	mean +- s.d.		0.018	±	0.007	< (0.009
		5.0.0 -					5.0.0	-			
*a – Laborato	ory error										

*b – Error in recording data in the field

*c = The original data sheet was not returned

Table 6	Wisconsin DHS gamma isotopic analysis results from the quarterly composites of air particulate
	filters collected from the Point Beach – Kewaunee environmental monitoring program.

Measurement	s in units of pCi/m ³			
Site: PBK-1	1st quarter	2nd quarter	3 rd quarter	4th quarter
Be-7	0.067 ± 0.0045	0.055 ± 0.0035	0.0551 ± 0.0052	0.0481 ± 0.0044
Mn-54	< 0.0002	< 0.0001	< 0.0003	< 0.0003
Co-58	< 0.0002	< 0.0001	< 0.0003	< 0.0003
Fe-59	< 0.0004	< 0.0002	< 0.0006	< 0.0006
Co-60	< 0.0002	< 0.0001	< 0.0003	< 0.0003
Zn-65	< 0.0003	< 0.0002	< 0.0006	< 0.0005
Nb-95	< 0.0003	< 0.0014	< 0.0003	< 0.0003
Zr-95	< 0.0004	< 0.0002	< 0.0005	< 0.0004
Ru-103	< 0.0002	< 0.0001	< 0.0003	< 0.0003
Ru-106	< 0.0015	< 0.0007	< 0.0020	< 0.0021
I-131	< 0.0019	< 0.0018	< 0.0008	< 0.0018
Cs-134	< 0.0002 < 0.0002	< 0.0001 < 0.0002	< 0.0003 < 0.0003	< 0.0003 < 0.0002
Cs-137 Ba-140	< 0.0002	< 0.0002	< 0.0003	< 0.0002
La-140	< 0.0020	< 0.0006	< 0.0010	< 0.0029
Ce-141	< 0.0005	< 0.0002	< 0.0004	< 0.0012
Ce-144	< 0.0011	< 0.0002	< 0.0014	< 0.0009
	0.0011			
Site: PBK-4				
Be-7	0.056 ± 0.0045	0.054 ± 0.0035	0.0551 ± 0.0052	0.051 ± 0.0055
Mn-54	< 0.0002	< 0.0001	< 0.0003	< 0.0004
Co-58	< 0.0002	< 0.0001	< 0.0003	< 0.0003
Fe-59	< 0.0005	< 0.0003	< 0.0006	< 0.0007
Co-60 Zn-65	< 0.0002 < 0.0004	< 0.0002 < 0.0002	< 0.0003 < 0.0006	< 0.0005 < 0.0009
Nb-95	< 0.0004	< 0.0002	< 0.0008	< 0.0009
Zr-95	< 0.0003	< 0.0002	< 0.0005	< 0.0006
Ru-103	< 0.0003	< 0.0002	< 0.0003	< 0.0004
Ru-106	< 0.0018	< 0.0010	< 0.0020	< 0.0034
I-131	< 0.0020	< 0.0018	< 0.0008	< 0.0015
Cs-134	< 0.0002	< 0.0001	< 0.0003	< 0.0004
Cs-137	< 0.0002	< 0.0001	< 0.0003	< 0.0004
Ba-140	< 0.0026	< 0.0023	< 0.0016	< 0.0028
La-140	< 0.0012	< 0.0008	< 0.0010	< 0.0011
Ce-141	< 0.0004	< 0.0003	< 0.0004	< 0.0007
Ce-144	< 0.0009	< 0.0007	< 0.0014	< 0.0017
Site: PBK-7				
Be-7	0.058 ± 0.0039	0.058 ± 0.0025	0.0637 ± 0.0055	0.0481 ± 0.0052
Mn-54	< 0.0001	< 0.0000	< 0.0003	< 0.0004
Co-58	< 0.0001	< 0.0000	< 0.0003	< 0.0004
Fe-59	< 0.0003	< 0.0001	< 0.0007	< 0.0008
Co-60	< 0.0001	0.0001 ± 0.0000	< 0.0005	< 0.0005
Zn-65	< 0.0003	< 0.0000	< 0.0006	< 0.0005
Nb-95	< 0.0002	0.0001 ± 0.0000	< 0.0004	< 0.0004
Zr-95	< 0.0003	< 0.0001	< 0.0005	< 0.0006
Ru-103	< 0.0002	< 0.0001	< 0.0004	< 0.0004
Ru-106	< 0.0010	< 0.0002	< 0.0028	< 0.0030
I-131	< 0.0020	< 0.0067	< 0.0010	< 0.0012
Cs-134	< 0.0001	< 0.0000	< 0.0004	< 0.0004
Cs-137 Ba-140	< 0.0001 < 0.0024	< 0.0000 < 0.0026	< 0.0005 < 0.0023	< 0.0003 < 0.0024
Ба-140 La-140	< 0.0024	< 0.0028	< 0.0023	< 0.0024 < 0.0011
Ce-141	< 0.0003	< 0.0010	< 0.0009	< 0.0011
Ce-141 Ce-144	< 0.0005	< 0.0001	< 0.0003	< 0.0004
	s other than those reported v			

Table 6 (continued). Wisconsin DHS gamma isotopic analysis results from the quarterly composites of air	
particulate filters collected from the Point Beach – Kewaunee environmental monitoring	
program.	

- 4	כ	
		2
D	-	-
		<u>ار</u>

	ogram.			
Measurements	in units of pCi/m ³			
Site: PBK-8	1st quarter	2nd quarter	3 rd quarter	4th quarter
Be-7	0.059 ± 0.0043	0.063 0.0040	0.0662 ± 0.0048	0.0578 ± 0.0039
Mn-54	< 0.0002	0.0001	< 0.0002	< 0.0001
Co-58	< 0.0002	0.0001	< 0.0002	< 0.0001
Fe-59	< 0.0004	0.0003	< 0.0004	< 0.0003
Co-60	< 0.0002	0.0001	< 0.0003	< 0.0001
Zn-65	< 0.0004	0.0002	< 0.0004	< 0.0003
Nb-95	< 0.0003	0.0002	< 0.0002	< 0.0002
Zr-95	< 0.0003	0.0002	< 0.0004	< 0.0002
Ru-103	< 0.0003	0.0002	< 0.0002	< 0.0001
Ru-106	< 0.0015	0.0008	< 0.0024	< 0.0011
I-131	< 0.0020	0.0036	< 0.0005	< 0.0007
Cs-134	< 0.0002	0.0001	< 0.0003	< 0.0001
Cs-137	< 0.0002	0.0010	< 0.0003	< 0.0001
Ba-140	< 0.0029	0.0030	< 0.0011	< 0.0011
La-140	< 0.0010	0.0012	< 0.0005	< 0.0004
Ce-141	< 0.0005	0.0003	< 0.0003	< 0.0002
Ce-144	< 0.0011	0.0005	< 0.0012	< 0.0005
Site: PBK-17				
Be-7	0.055 ± 0.0038	0.060 0.0035	0.0613 ± 0.0058	0.0418 ± 0.0046
Mn-54	< 0.0001	0.0001	< 0.0003	< 0.0002
Co-58	< 0.0001	0.0001	< 0.0004	< 0.0003
Fe-59	< 0.0003	0.0002	< 0.0005	< 0.0006
Co-60	< 0.0002	0.0001	< 0.0004	< 0.0003
Zn-65	< 0.0003	0.0001	< 0.0007	< 0.0006
Nb-95	< 0.0002	0.0001	< 0.0004	< 0.0004
Zr-95	< 0.0002	0.0001	< 0.0006	< 0.0006
Ru-103	< 0.0002	0.0001	< 0.0003	< 0.0003
Ru-106	< 0.0011	0.0005	< 0.0026	< 0.0027
I-131	< 0.0018	0.0018	< 0.0010	< 0.0010
Cs-134	< 0.0001	0.0001	< 0.0004	< 0.0003
Cs-137	< 0.0001	0.0002	< 0.0003	< 0.0003
Ba-140	< 0.0022	0.0017	< 0.0022	< 0.0022
La-140	< 0.0008	0.0006	< 0.0007	< 0.0007
Ce-141	< 0.0003	0.0002	< 0.0005	< 0.0004
Ce-144	< 0.0006	0.0003	< 0.0016	< 0.0010
Site: PBK-18				
Be-7	0.061 ± 0.0042	0.048 ± 0.0032	0.0493 ± 0.0047	0.0501 ± 0.0047
Mn-54	< 0.0001	< 0.0001	< 0.0003	< 0.0003
Co-58	< 0.0002	< 0.0001	< 0.0003	< 0.0003
Fe-59	< 0.0004	< 0.0003	< 0.0005	< 0.0007
Co-60	< 0.0002	< 0.0001	< 0.0003	< 0.0004
Zn-65	< 0.0003	< 0.0002	< 0.0005	< 0.0006
Nb-95	< 0.0002	< 0.0002	< 0.0003	< 0.0003
Zr-95	< 0.0003	< 0.0002	< 0.0004	< 0.0006
Ru-103	< 0.0002	< 0.0001	< 0.0003	< 0.0003
Ru-106	< 0.0013	< 0.0008	< 0.0022	< 0.0024
I-131	< 0.0021	< 0.0018	< 0.0009	< 0.0015
Cs-134	< 0.0002	< 0.0001	< 0.0003	< 0.0003
Cs-137	< 0.0002	< 0.0001	< 0.0003	< 0.0004
Ba-140	< 0.0026	< 0.0020	< 0.0016	< 0.0025
La-140	< 0.0010	< 0.0008	< 0.0006	< 0.0008
Ce-141	< 0.0004	< 0.0002	< 0.0004	< 0.0005
Ce-144	< 0.0010	< 0.0004	< 0.0013	< 0.0018
Radioisotopes	other than those reported w	are not detected		

Radioisotopes other than those reported were not detected.

program.	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
Date Placed:	01/13/15	04/02/15	07/07/15	10/06/15
Date Removed:	04/02/15	07/07/15	10/06/15	01/05/16
Days in the Field:	79	96	91	91
•	lividual quarterly date i	s reported as: mR / Sta	andard Quarter + 2 sigr	na counting error.
LD sites located at the Poi	nt Beach ISFSI.			
1	23.1 +- 1.7	26.1 +- 2.0	23.3 +- 1.8	28.4 +- 2.3
2	49.0 +- 3.5	53.4 +- 1.8	44.1 +- 1.8	57.4 +- 3.8
3	23.9 +- 1.1	23.4 +- 1.7	23.4 +- 1.7	24.0 +- 1.5
4	17.3 +- 1.1	17.8 +- 0.6	17.5 +- 1.2	21.1 +- 1.1
5	19.6 +- 0.6	17.4 +- 1.0	20.2 +- 0.5	18.2 +- 0.8
6	35.7 +- 1.0	33.7 +- 1.8	46.4 +- 1.3	35.9 +- 2.4
0 7		52.7 +- 2.5		54.3 +- 3.1
8	45.7 +- 1.8 25.3 +- 1.1	24.5 +- 1.2	53.4 +- 2.0 24.8 +- 1.2	26.4 +- 1.8
-	20.0 1 1.1	24.0 1 1.2	24.0 1 1.2	20.4 1 1.0
Quarterly average +- s.d.	30.0 +- 12.0	31.1 +- 14.5	31.6 +- 13.9	33.2 +- 14.9
FLD sites, excluding sites 1	-8, that are located 0	- 2 miles from either	the Point Beach or th	e Kewaunee facilit
9	15.6 +- 0.9	14.1 +- 0.8	17.0 +- 1.1	13.6 +- 0.7
10	12.5 +- 0.6	16.0 +- 1.1	13.4 +- 0.6	15.0 +- 0.7
11	11.0 +- 0.6	15.3 +- 0.8	12.3 +- 0.6	14.8 +- 0.9
12	15.7 +- 0.7	15.8 +- 0.6	17.4 +- 1.0	14.7 +- 1.1
13	12.0 +- 0.8	15.8 +- 0.7	13.6 +- 1.0	14.8 +- 0.7
10	15.8 +- 0.6	18.5 +- 1.1	15.6 +- 0.6	16.8 +- 1.4
19	14.0 +- 0.8	16.3 +- 1.2	15.5 +- 0.9	15.4 +- 1.2
20	13.1 +- 0.7	14.4 +- 1.0	14.5 +- 0.8	15.9 +- 1.1
20				
21	11.9 +- 0.7 16.1 +- 1.0	14.6 +- 0.9 20.4 +- 0.8	13.7 +- 0.9 18.1 +- 0.7	17.3 +- 1.1 21.2 +- 0.9
Quarterly average +- s.d.	13.8 +- 1.9	16.1 +- 2.0	15.1 +- 1.9	16.0 +- 2.1
TLD sites that are located 2	- 5 miles from either	the Point Beach or th	ne Kewaunee facility.	
15	14.1 + 0.0	17.9 +- 1.1	15.0 + 1.0	16.1 +- 0.9
15	14.1 +- 0.9		15.0 +- 1.0	
16	10.5 +- 0.8	12.0 +- 1.1	11.1 +- 0.8	10.8 +- 0.8
17	13.9 +- 0.8	14.1 +- 0.7	15.8 +- 1.1	14.4 +- 0.7
18	13.5 +- 0.7	21.1 +- 1.1	14.9 +- 0.5	18.9 +- 0.9
23	14.1 +- 1.0	16.5 +- 1.5	16.0 +- 0.7	17.9 +- 2.0
24	9.0 +- 0.7	12.1 +- 0.5	9.6 +- 0.7	12.7 +- 0.8
25	12.3 +- 0.7	18.6 +- 0.9	13.6 +- 0.7	19.6 +- 1.2
26	13.3 +- 0.5	12.6 +- 1.0	14.8 +- 0.6	13.6 +- 1.0
Quarterly average +- s.d.	12.6 +- 1.9	15.6 +- 3.4	13.9 +- 2.3	15.5 +- 3.1
TLD sites that are located g	reater than 5 miles fr	om either the Point B	each or the Kewaune	e facility.
27	8.9 +- 0.5	13.3 +- 0.8	9.4 +- 0.6	14.9 +- 1.0
28	12.1 +- 0.7	13.5 +- 0.9	13.1 +- 0.8	15.3 +- 1.1
29	11.4 +- 0.6	11.1 +- 0.6	14.2 +- 0.8	12.6 +- 0.7
30	12.1 +- 0.8	15.3 +- 1.3	14.1 +- 1.0	16.4 +- 1.0
31	11.4 +- 1.0	11.7 +- 0.8	11.9 +- 1.1	12.8 +- 1.5
Quarterly average +- s.d.	11.2 +- 1.3	13.0 +- 1.7	12.5 +- 2.0	14.4 +- 1.6
ND - No data; the TLD was lo				

Measurements in units of nCi/m2

monthly composite sample

Collection	Inches	Gross beta	Tritium
01/07/15	0.43	0.05 +- 0.01	< 2.3
02/04/15	0.40	0.06 +- 0.01	< 2.1
03/04/15	0.55	0.06 +- 0.01	< 2.9
04/08/15	2.78	0.15 +- 0.06	< 14.8
05/06/15	0.93	0.11 +- 0.02	< 4.9
06/02/15	5.69	0.08 +- 0.09	< 29.9
07/01/15	0.98	0.04 +- 0.02	< 5.2
08/13/15	3.87	0.14 +- 0.07	< 20.2
09/09/15	3.51	0.09 +- 0.06	< 18.3
10/07/15	2.27	0.10 +- 0.04	< 12.1
11/04/15	4.12	< 0.11	< 21.9
12/09/15	4.83	0.63 +- 0.13	< 25.5

Table 9 Wisconsin DHS analysis results for fish samples collected for the Point Beach – Kewaunee environmental monitoring program.

Collection date:	01/06/15	02/25/15	05/09/15	06/14/15
Туре	White Fish	Burbot	Rainbow Trout	combined *a
gamma isotopic				
K-40	2820 +- 508	1960 +- 345	*b	1520 +- 267
Mn-54	< 11	< 7	*b	< 7
Co-58	< 10	< 9	*b	< 10
Fe-59	< 31	< 26	*b	< 23
Co-60	< 14	< 6	*b	< 8
Zn-65	< 26	< 20	*b	< 15
Nb-95	< 15	< 14	*b	< 14
Zr-95	< 16	< 19	*b	< 17
Cs-134	< 7	< 7	*b	< 6
Cs-137	< 12	< 5	*b	< 11

Collection date:	11/19/15
Туре	Trout /White fish
gamma isotopic	
K-40	2340 +- 407
Mn-54	< 8
Co-58	< 9
Fe-59	< 22
Co-60	< 10
Zn-65	< 17
Nb-95	< 14
Zr-95	< 19
Cs-134	< 7
Cs-137	17 +- 5

Measurements in units of pCi/kilogram (wet)

Radioisotopes other than those reported were not detected.

*a - One sample from three separate samples of 2 Burbots and 1 Lake Trout

*b - Not enough fish for a sample

Collection date:	07/14/15	07/15/15	07/07/15
Site:	PBK-5	PBK-10a	PBK-29
gross alpha	< 4260	< 2980	< 3810
gross beta	2800 +- 915	3220 +- 904	3320 +- 1040
K-40	3840 +- 649	3200 +- 572	4940 +- 837
Mn-54	< 10	< 14	< 14
Co-58	< 17	< 22	< 29
Fe-59	< 68	< 91	< 116
Co-60	< 10	< 16	< 17
Zn-65	< 22	< 32	< 44
Nb-95	< 42	< 57	< 62
Zr-95	< 31	< 44	< 49
Cs-134	< 9	< 12	< 11
Cs-137	< 13	< 15	22 +- 6

Collection date:	07/15/15	07/15/15	07/15/15	07/14/15
Site:	PBK-12a	PBK-12b	PBK-12c	PBK-26
gross alpha	< 3910	< 4250	< 4300	< 2900
gross beta	5890 +- 1090	4540 +- 1050	6840 +- 1050	2820 +- 923
K-40	6020 +- 993	4880 +- 830	5570 +- 929	5340 +- 884
Mn-54	< 13	< 15	< 15	< 11
Co-58	< 20	< 24	< 26	< 16
Fe-59	< 71	< 87	< 87	< 65
Co-60	< 13	< 16	< 16	< 13
Zn-65	< 29	< 39	< 37	< 28
Nb-95	< 47	< 62	< 61	< 47
Zr-95	< 33	< 47	< 44	< 33
Cs-134	< 11	< 10	< 12	< 9
Cs-137	< 16	< 15	< 15	< 15

Naturally occurring radioisotopes such as radium-226 (²²⁶Ra), bismuth-214 (²¹⁴Bi), lead-214 (²¹⁴Pb), actinium-228 (²²⁸Ac), bismuth-212 (²¹²Bi), lead-212 (²¹²Pb) from the naturally occurring uranium-238 (²³⁸U), and thorium-232 (²³²Th) decay series are commonly detected but have not been quantified or reported.

Radioisotopes other than those reported were not detected.

PBK-9; Point Beach meteorological tower

Collection date:	01/15/15	February	03/11/15	04/16/15	05/14/15	06/11/15	
gross alpha-sol	0.8 +- 0.7	*d	1.1 +- 0.8	3.2 +- 1.3	1.2 +- 0.9	< 0.9	
gross beta-sol	2.0 +- 0.9	*d	1.5 +- 0.8	2.9 +- 0.9	2.1 +- 0.9	< 1.3	
gross alpha-insol	< 0.6	*d	< 0.5	< 0.7	< 0.5	< 0.6	
gross beta-insol	< 1.1	*d	< 1.1	< 1.1	< 1.1	< 1.0	
I-131	< 0.2			< 0.11	< 0.53*b		
H-3 *a	< 211			< 209			
Sr-89 *a	*c			*с			
Sr-90 *a	*c			*с			
gamma isotopic							
Mn-54	< 2	*d	< 10	< 2	< 8	< 7	
Co-58	< 2	*d	< 7	< 2	< 8	< 7	
Fe-59	< 4	*d	< 20	< 5	< 17	< 17	
Co-60	< 2	*d	< 13	< 2	< 7	< 11	
Zn-65	< 4	*d	< 21	< 5	< 12	< 15	
Nb-95	< 2	*d	< 11	< 3	< 8	< 7	
Zr-95	< 3	*d	< 21	< 4	< 13	< 12	
I-131	< 2	*d	< 13	< 3	< 11	< 14	
Cs-134	< 2	*d	< 12	< 3	< 7	< 9	
Cs-137	< 2	*d	< 13	< 2	< 7	< 11	
Ba-140	< 7	*d	< 40	< 10	< 27	< 34	
La-140	< 2	*d	< 15	< 4	< 11	< 13	
Collection date:	07/09/15	08/13/15	09/16/15	10/14/15	11/05/15	12/10/15	
gross alpha-sol	< 0.6	< 0.6	< 0.7	0.9 +- 0.6	< 0.6	< 0.5	
gross beta-sol	< 1.0	1.3 +- 0.8	1.8 +- 0.8	1.6 +- 0.8	1.8 +- 0.8	1.7 +- 0.7	
gross alpha-insol	< 0.6	< 0.6	< 0.6	< 0.7	< 0.6	< 0.5	
gross beta-insol	< 1.0	< 1.0	< 1.3	< 1.0	< 1.1	< 1.0	
I-131		< 0.1				< 0.08	
H-3 *a	< 207			< 209		< 207	
Sr-89 *a	< 3.0			< 2.08		< 3.0	
Sr-90 *a	< 0.5			< 0.24		< 0.5	
gamma isotopic							
Mn-54	< 7	*с	< 9	< 8	< 6	< 8	
Co-58	< 7	*с	< 8	< 9	< 6	< 9	
Fe-59	< 13	*C	< 15	< 16	< 12	< 16	
Co-60	< 7	*с	< 9	< 13	< 8	< 9	
Zn-65	< 14	*с	< 24	< 15	< 15	< 17	
Nb-95	< 8	*с	< 11	< 8	< 6	< 9	
Zr-95	< 11	*C	< 15	< 19	< 10	< 13	
I-131	< 12	*с	< 12	< 15	< 8	< 13	
Cs-134	< 7	*с	< 8	< 8	< 7	< 8	
Cs-137	< 7	*C	< 11	< 12	< 7	< 9	
Ba-140	< 36	*c	< 38	< 42	< 27	< 31	
La-140	< 13	*C	< 14	< 13	< 12	< 15	
*a - Analysis is perf	ormed on a quarte	rly composite.	*b - did no	ot meet lower limit of	detection		
			*-1	*d due to potety concern comple was not taken			

 *c - analysis not performed
 *d - due to safety concern sample was not taken

 Radioisotopes other than those reported were not detected.

PBK-12a (K-001D); Kewaunee effluent channel

Collection date:	01/06/15	02/03/15	03/02/15	04/01/15	05/05/15	06/01/15
gross alpha-sol	< 1.3	< 0.8	< 0.8	< 1.0	2.2 +- 1.1	1.2 +- 0.8
gross beta-sol	< 1.3	2.7 +- 0.9	1.5 +- 0.9	< 1.1	2.9 +- 0.9	1.8 +- 0.9
gross alpha-insol	< 0.9	< 0.7	< 0.7	< 0.6	< 0.6	< 0.7
gross beta-insol	< 1.3	< 1.1	< 1.1	< 1.3	< 1.2	< 1.1
I-131	< 0.5	< 0.2		< 0.29	< 0.55	
H-3 *a	< 211			< 209		
Sr-89 *a	*с			*с		
Sr-90 *a	*с			*с		
gamma isotopic						
Mn-54	< 8	< 1	< 7	< 5	< 6	< 7
Co-58	< 7	< 1	< 8	< 5	< 7	< 6
Fe-59	< 18	< 1	< 17	< 14	< 12	< 16
Co-60	< 9	< 1	< 9	< 7	< 7	< 8
Zn-65	< 16	< 1	< 17	< 14	< 14	< 15
Nb-95	< 10	< 1	< 7	< 6	< 7	< 7
Zr-95	< 16	< 1	< 14	< 9	< 10	< 13
I-131	< 12	< 5	< 11	< 9	< 9	< 13
Cs-134	< 8	< 1	< 8	< 6	< 7	< 8
Cs-137	< 8	< 1	< 7	< 6	< 7	< 7
Ba-140	< 39	< 7	< 35	< 27	< 31	< 36
La-140	< 15	< 2	< 13	< 12	< 10	< 14
Lu 140						
Collection date:	07/01/15	08/03/15	09/06/15	10/01/15	11/02/15	12/01/15
gross alpha-sol	< 0.6	< 0.6	< 0.7	< 0.6	< 0.6	< 0.6
gross beta-sol	< 1.2	1.6 +- 0.7	1.6 +- 0.8	1.2 +- 0.7	1.4 +- 0.7	< 1.2
gross alpha-insol	< 0.6	< 0.6	< 0.73	< 0.7	< 0.6	< 0.6
gross beta-insol	< 1.3	< 1.0	< 1.14	< 1.1	< 1.2	1.3 +- 0.8
I-131		< 0.3		< 0.24		0.22 +- 0.11
H-3 *a	< 207			< 201		< 207
Sr-89 *a	< 3.7			< 2.34		< 3.7
Sr-90 *a	< 0.5			< 0.23		< 0.5
gamma isotopic						
Mn-54	< 2	< 3	< 9	< 9	< 7	< 7
Co-58	< 2	< 3	< 7	< 8	< 6	< 7
Fe-59	< 4	< 6	< 16	< 13	< 14	< 14
Co-60	< 2	< 4	< 10	< 8	< 10	< 6
Zn-65	< 5	< 6	< 20	< 21	< 15	< 16
Nb-95	< 3	< 3	< 9	< 9	< 7	< 8
Zr-95	< 4	< 5	< 16	< 16	< 15	< 13
I-131	< 4	< 5	< 14	< 14	< 10	< 16
Cs-134	< 2	< 3	< 8	< 8	< 7	< 8
Cs-137	< 2	< 3	< 9	< 9	< 7	< 7
Ba-140	< 11	< 14	< 48	< 38	< 33	< 35
La-140	< 4	< 6	< 12	< 12	< 13	< 13
*a - Analysis is perf	ormed on a quar	terly composite.	*b - did no	ot meet lower limit	of detection	
*c - analysis not performed *d - due to safety concern sample was not taken						
Radioisotopes othe	r than those repo	orted were not detect	ed			

Radioisotopes other than those reported were not detected.

PBK-17; Green Bay Water Utility - Rostok

Collection date:	01/05/15	02/02/15	03/02/15	04/06/15	05/04/15	06/01/15
gross alpha-sol gross beta-sol gross alpha-insol gross beta-insol I-131 H-3 *a Sr-89 *a Sr-90 *a gamma isotopic	< 0.5 1.2 +- 0.7 < 0.5 < 1.0 < 0.5 < 211 *b *b	< 1.0 < 1.1 < 0.5 < 1.2 < 0.1	< 1.1 < 1.2 < 0.5 < 1.3	2.4 +- 1.1 2.3 +- 0.9 < 0.7 < 1.1 < 0.2 *b *b *b	2.1 +- 1.0 3.2 +- 1.0 < 0.5 < 1.0 < 0.7 *b	< 1.0 1.2 + 0.8 < 0.5 < 1.0
Mn-54 Co-58 Fe-59 Co-60 Zn-65 Nb-95 Zr-95 I-131 Cs-134 Cs-137 Ba-140 La-140	< 10 < 8 < 17 < 13 < 16 < 8 < 16 < 12 < 9 < 12 < 41 < 10	< 8 < 8 < 16 < 8 < 13 < 9 < 16 < 10 < 9 < 9 < 9 < 29 < 14	< 9 < 8 < 22 < 11 < 21 < 8 < 16 < 10 < 10 < 8 < 32 < 14	< 9 < 7 < 15 < 8 < 16 < 8 < 13 < 9 < 6 < 7 < 30 < 12	< 7 < 6 < 16 < 7 < 12 < 7 < 13 < 9 < 7 < 6 < 27 < 7	< 7 < 6 < 16 < 6 < 12 < 8 < 13 < 10 < 7 < 8 < 29 < 9
Collection date:	07/06/15	08/04/15	09/06/15	10/12/15	11/02/15	12/07/15
gross alpha-sol gross beta-sol gross alpha-insol gross beta-insol I-131 H-3 *a Sr-89 *a Sr-90 *a	< 0.4 < 0.7 < 0.5 1.3 +- 0.8 < 207 < 3.0 < 0.4	< 0.7 < 1.0 < 0.6 < 1.2 < 0.2	< 0.6 < 1.2 < 0.6 < 1.3	< 0.5 1.7 +- 0.7 < 0.5 < 1.3 < 0.1 < 209 < 2.3 < 0.3	0.8 +- 0.5 < 1.3 < 0.6 < 1.0	< 0.6 1.1 +- 0.7 < 0.6 < 1.0 < 0.1
gamma isotopic Mn-54 Co-58 Fe-59 Co-60 Zn-65 Nb-95 Zr-95 I-131 Cs-134 Cs-134 Cs-137 Ba-140 La-140	< 7 < 8 < 19 < 10 < 15 < 9 < 15 < 9 < 9 < 6 < 23 < 13	 <	< 8 < 8 < 15 < 9 < 20 < 10 < 14 < 10 < 7 < 10 < 33 < 10	 8 15 <td>< 7 < 6 < 14 < 7 < 17 < 6 < 10 < 8 < 6 < 6 < 29 < 12</td><td> < 9 < 8 < 16 < 14 < 21 < 10 < 17 < 13 < 10 < 13 < 40 < 7 </td>	< 7 < 6 < 14 < 7 < 17 < 6 < 10 < 8 < 6 < 6 < 29 < 12	 < 9 < 8 < 16 < 14 < 21 < 10 < 17 < 13 < 10 < 13 < 40 < 7
*a - Analysis is perfor		composite.		t meet lower limit of		
*c - analysis not performance - Radioisotopes other		were not detected.		safety concern sar	npie was not taken	

	PBK-5	PBK-29	PBK-5	PBK-29	
Collection date:	7/14/15	7/16/15	9/16/15	9/16/15	
gross alpha-sol gross beta-sol gross alpha-insol gross beta-insol H-3	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	< 0.7 < 1.1 < 0.7 < 1.3 < 204	< 0. 1.3 +- 0. < 0. < 1. < 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Sr-89 Sr-90 gamma isotopic	< 3.0 < 0.6	< 3.1 < 0.6	< 1. < 0.	-	
Mn-54 Co-58 Fe-59	< 9 < 8 < 17	< 7 < 7 < 14	< 8 < 9 < 1	< 8 < 9 8 < 16	
Co-60 Zn-65	< 8 < 17	< 11 < 15	< 9 < 18	< 138< 19	
Nb-95 Zr-95 I-131	< 8 < 13 < 10	< 8 < 12 < 13	< 7 < 1: < 1(3 < 16	
Cs-134 Cs-137	< 8 < 7	< 9 < 11	< 9 < 7	< 8 < 12	
Ba-140 La-140	< 30 < 12	< 38 < 14	< 36 < 13		
*a - Analysis is perfo *c - analysis not perf	rmed on a quarterly o	composite.	*b - did not meet lower limit of de *d - due to safety concern sample		
Radioisotopes other than those reported were not detected.					

Table 12 Wisconsin DHS analysis results for well water samples collected for the Point Beach – Kewaunee environmental monitoring program.

 \Box

Measurements in units of pCi/liter

	PBK-3	PBK-10	PBK-11	PBK-12d N	PBK-12d S
Collection date:	07/15/15	04/15/15	07/15/15	07/15/15	07/15/15
gross alpha	< 2.6	< 1.1	< 2.2	< 2.3	< 2.7
gross beta	< 3.5	< 1.8	< 3.4	< 2.7	< 2.5
н-з	< 204	< 209	< 204	< 204	< 204
	PBK-3	PBK-10	PBK-11	PBK-12d N	PBK-12d S
Collection date:	09/16/15	10/07/15	09/16/15	09/16/15	09/16/15
gross alpha	< 2.2	3.74 +- 1.8	< 2.2	0.6 +- 1.4	1.7 +- 1.5
gross beta	< 3.1	2.42 +- 1.4	< 3.1	2.8 +- 1.9	1.1 +- 1.4
H-3	< 207	< 210	< 207	< 207	< 207
NS – A sample	was unable to be	collected.			

PBK-28 (E-21); St	trutz farm					
Collection date:	01/14/15	02/11/15	03/11/15	04/08/15	05/13/15	06/10/15
I-131	< 0.46	< 0.3		< 0.4	< 0.5	
Sr-90	0.45 +- 0.23	< 0.4	< 0.3	< 0.26 *b	*с	*c
gamma isotopic						
K-40	1440 +- 258	1460 +- 291	1280 +- 263	1370 +- 260	1430 +- 258	1490 +- 270
Mn-54	< 7	< 9	< 8	< 6	< 5	< 6
Co-58	< 6	< 8	< 8	< 7	< 5	< 7
Fe-59	< 12	< 23	< 20	< 17	< 13	< 16
Co-60	< 8	< 11	< 12	< 10	< 7	< 10
Zn-65	< 12	< 23	< 19	< 16	< 12	< 16
Nb-95	< 7	< 9	< 9	< 8	< 7	< 7
Zr-95	< 12	< 16	< 15	< 12	< 11	< 13
I-131	< 8	< 14	< 10	< 12	< 8	< 10
Cs-134	< 7	< 9	< 10	< 8	< 7	< 6
Cs-137	< 6	< 9	< 8	< 8	< 7	< 6
Ba-140	< 21	< 41	< 35	< 32	< 24	< 31
La-140	< 7	< 13	< 10	< 14	< 7	< 14
Collection date:	07/08/15	08/12/15	09/09/15	October	November	December
I-131		< 0.2			*d	
Sr-90	< 0.6	< 0.5	< 0.5	*d	*d	*d
gamma isotopic						
K-40	1370 +- 269	*c	1370 +- 277	*d	*d	*d
Mn-54	< 9	*c	< 10	*d	*d	*d
Co-58	< 9	*c	< 11	*d	*d	*d
Fe-59	< 18	*c	< 16	*d	*d	*d
Co-60	< 9	*c	< 10	*d	*d	*d
Zn-65	< 17	*c	< 17	*d	*d	*d
Nb-95	< 10	*c	< 9	*d	*d	*d
Zr-95	< 18	*c	< 17	*d	*d	*d
I-131	< 13	*c	< 14	*d	*d	*d
Cs-134	< 9	*c	< 7	*d	*d	*d
Cs-137	< 10	*c	< 10	*d	*d	*d
Ba-140	< 42	*c	< 43	*d	*d	*d
La-140	< 13	*C	< 14	*d	*d	*d

Radioisotopes other than those reported were not detected.

*b = Did not meet matrix recovery

a = Lower Limit of Detection not met

*c = not reported

*d = sampling suspended

PBK-24; Struck farm

Collection date:	01/14/15	02/11/15	03/11/15	04/08/15	05/13/15	06/10/15
I-131	< 0.53	< 0.3		< 0.4	< 0.9	
Sr-90	0.37 +- 0.2	< 0.65 *a	< 0.4	< 0.24 *b	< 1.29 *b	*c
gamma isotopic		< 0.00 u	v 0.4	C 0.24 D	1.20 0	Ŭ
K-40	1320 +- 270	1560 +- 306	1160 +- 250	1130 +- 214	1380 +- 279	1310 +- 241
Mn-54	< 9	< 9	< 11	< 6	< 8	< 7
Co-58	< 9	< 9	< 9	< 5	< 8	< 6
Fe-59	< 19	< 20	< 15	< 15	< 18	< 12
Co-60	< 10	< 12	< 15	< 8	< 12	< 8
Zn-65	< 22	< 20	< 21	< 17	< 24	< 16
Nb-95	< 10	< 9	< 10	< 5	< 10	< 6
Zr-95	< 16	< 14	< 19	< 11	< 13	< 12
I-131	< 11	< 11	< 14	< 9	< 10	< 12
Cs-134	< 9	< 9	< 12	< 6	< 9	< 7
Cs-137	< 10	< 9	< 14	< 6	< 8	< 6
Ba-140	< 33	< 36	< 44	< 27	< 34	< 31
La-140	< 12	< 11	< 14	< 14	< 10	< 7
Collection date	e: 7/8/15	8/12/15	9/9/15			
I-131		< 0.17			*d	
Sr-90	< 0.53	0.5 +- 0.27	0.7 +- 0.4	*d	*d	*d
gamma isotopic		0.0 1 0.27	0.1 1 0.1	ŭ	ŭ	4
K-40	1540 +- 297	*c	1060 +- 222	*d	*d	*d
Mn-54	< 10.7	*c	< 8.46	*d	*d	*d
Co-58	< 8.48	*c	< 9.15	*d	*d	*d
Fe-59	< 18.3	*c	< 18.9	*d	*d	*d
Co-60	< 10.9	*c	< 13	*d	*d	*d
Zn-65	< 21.6	*c	< 16.3	*d	*d	*d
Nb-95	< 8.89	*c	< 9.65	*d	*d	*d
Zr-95	< 17.5	*c	< 16.2	*d	*d	*d
I-131	< 13.7	*c	< 14.2	*d	*d	*d
Cs-134	< 8.24	*c	< 9.27	*d	*d	žd
Cs-137	< 9.69	*c	< 12	*d	*d	*d
D- 440		-	· · -		- '	-

Radioisotopes other than those reported were not detected.

*с

*с

< 36.3

< 10.2

*a = Lower Limit of Detection not met

*d

*d

*d

*d

*b = Did not meet matrix rocovery

*d = sampling suspended

Ba-140

La-140

*c = not reported

*d

*d

< 41

< 13.2

PBK-27 (E-40); R. Barta farm

Collection date:	01/14/15	02/11/15	03/11/15	04/08/15	05/13/15	06/10/15
I-131	< 0.52 *a	< 0.4		< 0.4	*c	
Sr-90	< 0.4	< 0.7	< 0.3	0.42 +- 0.18 *b	*c	*c
gamma isotopic						
K-40	1270 +- 234	1350 +- 279	1420 +- 255	1340 +- 220	1400 +- 230	1400 +- 257
Mn-54	< 6	< 11	< 5	< 2	< 4	< 8
Co-58	< 6	< 11	< 4	< 2	< 4	< 7
Fe-59	< 13	< 19	< 13	< 5	< 8	< 16
Co-60	< 7	< 14	< 8	< 3	< 5	< 11
Zn-65	< 13	< 24	< 12	< 6	< 9	< 16
Nb-95	< 7	< 9	< 5	< 3	< 5	< 9
Zr-95	< 11	< 17	< 10	< 4	< 8	< 13
I-131	< 7	< 13	< 7	< 4	< 14	< 14
Cs-134	< 7	< 11	< 7	< 2	< 5	< 8
Cs-137	< 6	< 13	< 6	< 2	< 4	< 10
Ba-140	< 23	< 44	< 22	< 11	< 30	< 38
La-140	< 7	< 13	< 8	< 4	< 10	< 9
Collection date:	07/08/15	08/12/15	09/09/15	*d	*d	*d
I-131		< 0.2		-	*d	2
Sr-90	< 0.6	< 0.5	< 0.5	*d	*d	*d
gamma isotopic				-	-	-
K-40	1370 +- 269	*с	1370 +- 277	*d	*d	*d
Mn-54	< 9	*c	< 10	*d	*d	*d
Co-58	< 9	*c	< 11	*d	*d	*d
Fe-59	< 18	*c	< 16	*d	*d	*d
Co-60	< 9	*с	< 10	*d	*d	*d
Zn-65	< 17	*c	< 17	*d	*d	*d
Nb-95	< 10	*c	< 9	*d	*d	*d
Zr-95	< 18	*c	< 17	*d	*d	*d
I-131	< 13	*c	< 14	*d	*d	*d
Cs-134	< 9	*c	< 7	*d	*d	*d
Cs-137	< 10	*c	< 10	*d	*d	*d
Ba-140	< 42	*c	< 43	*d	*d	*d
La-140	< 13	*c	< 14	*d	*d	*d
		-		-	-	-

Radioisotopes other than those reported were not detected.

*b = Did not meet matrix rocovery

*a = Lower Limit of Detection not met

*c = not reported

*d = sampling suspended

 Table 14 Wisconsin DHS analysis results for vegetation samples collected for the Point Beach –

 Kewaunee environmental monitoring program.

Measurements in	units of pCi/kilogram (wet)			
Site:	PBK-1	PBK-2	PBK-3	PBK-4	PBK-5
Collection date:	07/16/15	07/15/15	07/15/15	07/14/15	07/14/15
gross alpha	< 1980	< 1610	< 1200	< 1350	< 1550
gross beta	5670 +- 630	5290 +- 506	3950 +- 422	5010 +- 531	4220 +- 459
gamma isotopic					
Be-7	1500 +- 204	1100 +- 199	900 +- 185	1040 +- 168	543 +- 145
K-40	6230 +- 1110	6140 +- 1130	3990 +- 859	3890 +- 733	7020 +- 1300
Mn-54	< 24	< 27	< 29	< 22	< 27
Co-58	< 23	< 32	< 30	< 21	< 29
Fe-59	< 52	< 66	< 80	< 47	< 57
Co-60	< 34	< 40	< 40	< 32	< 40
Zn-65	< 56	< 66	< 63	< 47	< 67
Nb-95	< 27	< 36	< 39	< 25	< 27
Zr-95	< 44	< 56	< 62	< 37	< 43
I-131	< 42	< 66	< 61	< 56	< 46
Cs-134	< 24	< 33	< 26	< 20	< 22
Cs-137	< 32	< 42	< 26	< 31	< 29
Ba-140	< 120	< 171	< 148	< 129	< 135
La-140	< 38	< 44	< 79	< 33	< 54
Site:	PBK-7	PBK-8	PBK-14	PBK-17	
Collection date:	07/15/15	07/14/15	07/15/15	07/14/15	
gross alpha	< 2420	< 1160	< 853	< 769	
gross beta	3590 +- 627	5070 +- 444	1930 +- 257	2550 +- 269	
gamma isotopic					
Be-7	1650 +- 183	1020 +- 93	261 +- 97	1190 +- 185	
K-40	5880 +- 1010	6080 +- 989	3950 +- 796	4220 +- 794	
Mn-54	< 18	< 10	< 23	< 24	
Co-58	< 20	< 10	< 23	< 25	
Fe-59	< 47	< 25	< 60	< 52	
Co-60	< 21	< 14	< 28	< 27	
Zn-65	< 45	< 23	< 62	< 52	
Nb-95	< 24	< 13	< 24	< 30	
Zr-95	< 37	< 20	< 32	< 40	
I-131	< 65	< 32	< 38	< 60	
Cs-134	< 19	< 11	< 20	< 25	
Cs-137	< 19	< 13	< 20	< 25	
Ba-140	< 125	< 74	< 114	< 138	
1 1 10	10			10	

Radioisotopes other than those reported were not detected.

< 40

La-140

*a - required detection limit was not met due to laboratory error

< 47

< 40

< 20

Measurements in	units of pCi/kilogram ((wet)			
Site:	PBK-1	PBK-2	PBK-3	PBK-4	PBK-5
Collection date:	09/16/15	09/16/15	09/16/15	09/16/15	09/16/15
gross alpha	< 1460	< 1460	< 973	< 1670	< 988
gross beta	6400 +- 520	2670 +- 393	1740 +- 254	3000 +- 433	5930 +- 323
gamma isotopic					
Be-7	4980 +- 391	4440 +- 353	1250 +- 154	3140 +- 292	3020 +- 340
K-40	6000 +- 1090	4980 +- 916	4730 +- 838	5580 +- 1010	7390 +- 1340
Mn-54	< 28	< 26	< 21	< 26	< 27
Co-58	< 24	< 26	< 19	< 26	< 31
Fe-59	< 69	< 66	< 46	< 65	< 71
Co-60	< 30	< 34	< 31	< 32	< 33
Zn-65	< 59	< 63	< 43	< 66	< 55
Nb-95	< 26	< 30	< 23	< 29	< 33
Zr-95	< 35	< 44	< 37	< 38	< 52
I-131	< 64	< 70	< 74	< 72	< 72
Cs-134	< 23	< 26	< 21	< 25	< 29
Cs-137	< 26	< 27	< 28	< 22	< 27
Ba-140	< 153	< 151	< 150	< 158	< 181
La-140	< 65	< 65	< 46	< 65	< 62
Site:	PBK-7	PBK-8	PBK-14	PBK-17	
Collection date:	09/16/15	09/16/15	09/16/15	09/17/15	
gross alpha	< 1600	< 801	< 734	< 864	
gross beta	5110 +- 472	7740 +- 389	4970 +- 309	5020 +- 311	
gamma isotopic					
Be-7	4090 +- 359	1110 +- 184	1260 +- 228	1250 +- 207	
K-40	7090 +- 1230	6650 +- 1210	4920 +- 990	6190 +- 1150	
Mn-54	< 23	< 29	< 30	< 32	
Co-58	< 23	< 23	< 31	< 29	
Fe-59	< 57	< 60	< 63	< 61	
Co-60	< 26	< 36	< 37	< 32	
Zn-65	< 50	< 56	< 84	< 69	
Nb-95	< 29	< 34	< 35	< 29	
Zr-95	< 44	< 56	< 54	< 54	
I-131	< 76	< 74	< 73	< 64	
Cs-134	< 23	< 28	< 27	< 28	
Cs-137	< 25	< 33	< 27	< 24	
Ba-140	< 155	< 165	< 161	< 130	
La-140	< 44	< 50	< 52	< 50	

Radioisotopes other than those reported were not detected.

*a - required detection limit was not met due to laboratory error

Measurements in ur	nits of pCi/kilogram (dry)				
Site:	PBK-1	PBK-2	PBK-3	PBK-4	PBK-5
Collection date:	07/16/15	07/15/15	07/15/15	07/14/15	07/14/15
gross alpha	8860 +- 3490	7710 +- 3210	6660 +- 3180	1200 +- 4170	11200 +- 3630
gross beta	14500 +- 1290	18100 +- 1360	18300 +- 1480	15400 +- 1330	17200 +- 1340
gamma isotopic					
Cs-134	< 20	< 19	< 19	< 19	< 19
Cs-137	99.1 +- 17	130 +- 17	121 +- 17	100 +- 15	147 +- 19
Co-58	< 41	< 36	< 45	< 35	< 39
Co-60	< 24	< 25	< 26	< 24	< 24
Fe-59	< 184	< 144	< 164	< 134	< 149
Mn-54	< 28	< 23	< 26	< 23	< 23
Nb-95	< 79	< 93	< 94	< 92	< 97
K-40	13000 +- 2110	21200 +- 3420	21400 +- 3350	17500 +- 2840	19000 +- 3060
Zn-65	< 69	< 65	< 66	< 61	< 55
Zr-95	< 88	< 81	< 86	< 76	< 75
Site:	PBK-7	PBK-8	PBK-14	PBK-17	

Site:	PBK-7	PBK-8	PBK-14	PBK-17
Collection date:	07/15/15	07/14/15	07/14/15	07/14/15
gross alpha	7720 +- 3250	9160 +- 3720	10200 +- 3830	11700 +- 3700
gross beta	17200 +- 1340	18900 +- 1440	21100 +- 1530	15300 +- 1290
gamma isotopic				
Cs-134	< 20	< 18	< 17	< 15
Cs-137	170 +- 19	59.4 +- 13	120 +- 16	< 19
Co-58	< 40	< 35	< 37	< 33
Co-60	< 30	< 24	< 22	< 18
Fe-59	< 176	< 133	< 150	< 119
Mn-54	< 27	< 22	< 22	< 18
Nb-95	< 91	< 94	< 96	< 69
K-40	22700 +- 3550	19800 +- 3200	20000 +- 3220	14100 +- 2270
Zn-65	< 69	< 60	< 58	< 47
Zr-95	< 81	< 88	< 75	< 61

Naturally occurring radioisotopes such as radium-226 (²²⁶Ra), bismuth-214 (²¹⁴Bi), lead-214 (²¹⁴Pb), actinium-228 (²²⁸Ac), bismuth-212 (²¹²Bi), lead-212 (²¹²Pb) from the naturally occurring uranium-238 (²³⁸U), and thorium-232 (²³²Th) decay series are commonly detected but have not been quantified or reported.

Radioisotopes other than those reported were not detected.

Table 15 (continued). Wisconsin DHS analysis results for soil samples collected for the Point Beach – Kewaunee environmental monitoring program.

Site:	PBK-1	PBK-2	PBK-3	PBK-4	PBK-5
Collection date:	09/16/15	09/16/15	09/18/15	09/16/15	09/16/15
gross alpha	2990 +- 2740	6850 +- 3110	9450 +- 3360	6410 +- 3270	9710 +- 3710
gross beta	< 1360	15700 +- 1410	19900 +- 1420	16100 +- 1440	20600 +- 1450
gamma isotopic					
Cs-134	< 20	< 18	< 24	< 22	< 23
Cs-137	277 +- 29	247 +- 27	134 +- 20	114 +- 18	146 +- 22
Co-58	< 23	< 23	< 35	< 27	< 34
Co-60	< 27	< 24	< 27	< 21	< 25
Fe-59	< 63	< 84	< 94	< 81	< 86
Mn-54	< 22	< 23	< 29	< 24	< 27
Nb-95	< 32	< 47	< 55	< 48	< 58
K-40	13900 +- 2290	13600 +- 2240	20400 +- 3330	15600 +- 2560	19200 +- 3140
Zn-65	< 47	< 61	< 69	< 57	< 67
Zr-95	< 47	< 56	< 64	< 57	< 62
Site:	PBK-7	PBK-8	PBK-14	PBK-17	
Collection date:	09/16/15	09/16/15	09/16/15	09/17/15	
gross alpha	7800 +- 3780	8890 +- 3680	13200 +- 3880	13100 +- 4170	
gross beta	21000 +- 1460	18900 +- 1470	21600 +- 1430	11200 +- 1230	
gamma isotopic					
Cs-134	< 25	< 21	127 < 25	< 19	
Cs-137	175 +- 24	68 +- 15	< 42	128 +- 19	
Co-58	< 33	< 22	< 27	< 19	
Co-60	< 31	< 29	< 27	< 27	
Fe-59	< 111	< 79	< 89	< 64	
Mn-54	< 31	< 27	< 30	< 20	
Nb-95	< 61	< 34	< 54	< 30	
K-40	21700 +- 3530	17300 +- 2830	17600 +- 2900	13500 +- 2220	

Naturally occurring radioisotopes such as radium-226 (²²⁶Ra), bismuth-214 (²¹⁴Bi), lead-214 (²¹⁴Pb), actinium-228 (²²⁸Ac), bismuth-212 (²¹²Bi), lead-212 (²¹²Pb) from the naturally occurring uranium-238 (²³⁸U), and thorium-232 (²³²Th) decay series are commonly detected but have not been quantified or reported.

< 54

< 50

< 76

< 63

< 51

< 43

Radioisotopes other than those reported were not detected.

< 69

< 68

Zn-65

Zr-95

Measurements in units of pCi/kilogram (dry)

Appendices

Appendix A – Radionuclide Concentration Levels needing review by state radiological coordinator (SRC)

Should radioactivity concentrations exceed SRC review levels for a given radionuclide, the SRC will be consulted for review and assessment.

Medium	Radionuclide	SRC Review Level ^a
Airborne Particulates or Gas (pCi/m ³)	Gross Beta	1
	I-131 (Charcoal)	0.1
	Cs-134	1
	Cs-137	1
Precipitation (pCi/I)	H-3	1,000
Water (pCi/l)	Gross Alpha	10
· · · ·	Gross Beta	30
	H-3	10,000
	Mn-54	100
	Fe-59	40
	Co-58	100
	Co-60	30
	Zn-65	30
	Zr-Nb-95	40
	I-131	1
	Cs-134	10
	Cs-137	20
	Ba-La-140	100
	Sr-89	8
	Sr-90	8 ^d
Milk (pCi/l)	I-131	1
	Cs-134	20
	Cs-137	20
	Ba-La-140	100
	Sr-89	10
	Gross Beta	30,000
Grass (Vegetation), Cattle Feed, and Vegetables (pCi/kg wet)	I-131	100
	Cs-134	200
	Cs-137	200
	Sr-89	1,000
	Sr-90	1,000
Eggs (pCi/kg) wet)	Gross Beta	30,000
	Cs-134	200
	Cs-137	200
	Sr-89	1,000

	Sr-90	1,000
Soil, Bottom Sediment (pCi/kg)	Gross Beta	5,000
	Cs-134	5,000
	Cs-137	5,000
	Sr-89	5,000
	Sr-90	5,000
Meat (pCi/kg)	Gross Beta (Flesh, Bones)	10,000
	Cs-134 (Flesh)	1,000
	Cs-137 (Flesh)	2,000
	Sr-89 (Bones)	2,000
	Sr-90 (Bones)	2,000
Fish (pCi/kg wet)	Gross Beta (Flesh, Bones)	10,000
	Mn-54	
	Fe-59	
	Co-58	
	Co-60	
	Cs-134 (Flesh)	1,000
	Cs-137 (Flesh)	2,000
	Sr-89 (Bones)	2,000
	Sr-90 (Bones)	2,000
	Zn-65 (Bones)	
Thermoluminescent Dosimeter (mR/Std Qtr)	Direct Exposure	

- a. Radionuclides will be monitored by Wisconsin Dept. of Health Services, Radiation Protection Sections, Environmental Monitoring program and concentrations above the listed levels will be reported to the Wisconsin state radiological coordinator (SRC) for further review and assessment.
- b. For drinking water (well water) samples, this is a 40 CFR Part 141 value. If no drinking water pathway exists, a value of 30,000 pCi/l may be used. (NUREG-1301. Supplement No. 1, page 64, table 3.12-2)
- c. If no drinking water pathway exists, a value of 20 pCi/l may be used. (NUREG-1301. Supplement No. 1, page 64, table 3.12-2)
- d. Drinking Water values from Prescribed Procedures for Measurement of Radioactivity in Drinking Water, EPA-600/4-80-032, August 1980.

Appendix B – Sample Point Locations

The sample point locations.

PBK-1Francar residencePBK-2Southwest corner property line - Point BeachPBK-3Two Creeks Town HallPBK-3Two Creeks Town HallPBK-4Residence north property line - Point BeachPBK-5Two Creeks Park: NW corner of propertyPBK-5Two Creeks Park: NW corner of propertyPBK-5Point Beach, meteorological towerPBK-9Point Beach, effluent channelPBK-10Point Beach, effluent channelPBK-11Two Creeks International HarvesterPBK-12Kewaunee, effluent channel, 500 feet NPBK-13Kewaunee, effluent channel, 500 feet SPBK-14Nuclear Road – field east of parking lotPBK-15Green Bay Pumping Station - RostokPBK-16Green Bay Pumping Station - RostokPBK-28KewauneePBK-29Itish Road – at Lake MichiganPBK-31State A of the parimeter fencePBK-13Point Beach, Of mile C of Lakeshore RoadPBK-11Nuclear Road, 0.6 mile C of Lakeshore RoadPBK-11Nuclear Road, 0.6 mile C of Lakeshore RoadPBK-11Nuclear Road, 0.6 mile C of Lakeshore RoadPBK-11Highway 42, 0.3 mile M of Tapawingo RoadPBK-114Two Creeks Road, 0.1 mile E of Lakeshore RoadPBK-115Junction of Lakeshore RoadPBK-114Two Creeks Road, 0.1 mile E of Lakeshore RoadPBK-115H	Sample Point	Location Description
PBK-2Southwest corner property line - Point BeachPBK-3Two Creeks Town HallPBK-4Residence north property line - Point BeachPBK-5Two Creeks Park; NW corner of propertyPBK-5Two Creeks Park; NW corner of propertyPBK-7WPSC substation, Cty VPBK-8P Interfeldt farmPBK-9Point Beach, meteorological towerPBK-10Point Beach, effluent channelPBK-11Two Creeks International HarvesterPBK-12Kewaunee, effluent channelPBK-12Kewaunee, effluent channelPBK-12Kewaunee, effluent channel, 500 feet NPBK-12Kewaunee, effluent channel, 500 feet SPBK-12Kewaunee, effluent channel, 500 feet SPBK-12Kewaunee, effluent channel, 500 feet SPBK-12Kewaunee, effluent channel, 500 feet SPBK-13Green Bay Pumping Station - RostokPBK-14Nuclear Road – field east of parking lotPBK-15Kewaunee, effluent channel, 500 feet SPBK-16Kewaunee, effluent channel, 500 feet SPBK-17Green Bay Pumping Station - RostokPBK-18Kewaunee, meteorological towerPBK-29Irish Road – at Lake MichiganPBK-215KewauneePBK-118Point Beach north property line, LakeshorePBK-119Nuclear Road, 0.6 mile E of Lakeshore RoadPBK-110Nuclear Road, 0.6 mile E of Lakeshore RoadPBK-111Nuclear Road, 0.6 mile E of Lakeshore RoadPBK-112Highway 42, 0.6 mile N of Nuclear RoadPBK-113Highway 4	PBK-1	Francar residence
PBK-3 Two Creeks Town Hall PBK-3 Two Creeks Town Hall PBK-4 Residence north property line - Point Beach PBK-5 Two Creeks Park; NW corner of property PBK-5 Two Creeks Park; NW corner of property PBK-7 WPSC substation, Cty V PBK-8 P Ihlenfeldt farm PBK-9 Point Beach, meteorological tower PBK-10 Point Beach, effluent channel PBK-11 Two Creeks International Harvester PBK-12 Kewaunee, effluent channel PBK-13 Kewaunee, effluent channel PBK-14 Nuclear Road – field east of parking lot PBK-15 Green Bay Pumping Station - Rostok PBK-14 Kewaunee, meteorological tower PBK-26 Kewaunee PBK-21 L Struck farm PBK-28 Irish Road – at Lake Michigan <td< td=""><td>PBK-1</td><td>Francar residence</td></td<>	PBK-1	Francar residence
PBK-3Two Creeks Town HallPBK-4Residence north property line - Point BeachPBK-5Two Creeks Park; NW corner of propertyPBK-5Two Creeks Park; NW corner of propertyPBK-7WPSC substation, Cty VPBK-7PBK-8P Ihlenfeldt farmPBK-9Point Beach, effluent channelPBK-10aPoint Beach, effluent channelPBK-11Two Creeks International HarvesterPBK-12Kewaunee, effluent channel, 500 feet NPBK-12Kewaunee, effluent channel, 500 feet SPBK-13Kuewaunee, effluent channel, 500 feet SPBK-14Nuclear Road – field east of parking lotPBK-15Green Bay Pumping Station - RostokPBK-16Kewaunee, meteorological towerPBK-21L Struck farmPBK-23Irish Road – at Lake MichiganPBK-24L Struck farmPBK-25KPS LISFSI on the inside of the perimeter fencePBK-71Point Beach North property line, Lakeshore Point Beach North property line, Lakeshore RoadPBK-71Nuclear Road, 0.6 mile E of Lakeshore RoadPBK-71Highway 42, 0.6 mile N of Muclear RoadPBK-71Highway 42, 0.6 mile N of Tapawingo RoadPBK-715Junction of Lakeshore RoadPBK-716Cty V. 0.5 mile W of Hwy 42PBK-716Cty V. 0.5 mile W of Hwy 42PBK-717Road	PBK-2	Southwest corner property line - Point Beach
PBK-4Residence north property line - Point BeachPBK-5Two Creeks Park; NW corner of propertyPBK-5Two Creeks Park; NW corner of propertyPBK-7WPSC substation, Cly VPBK-8P linlenfeldt farmPBK-9Point Beach, meteorological towerPBK-10aPoint Beach, effluent channelPBK-11Two Creeks International HarvesterPBK-12aKewaunee, effluent channelPBK-12bKewaunee, effluent channel, 500 feet NPBK-12cKewaunee, effluent channel, 500 feet NPBK-12cKewaunee, will sitesPBK-17Green Bay Pumping Station - RostokPBK-18Kewaunee, meteorological towerPBK-24L. Struck farmPBK-25KewauneePBK-26KewauneePBK-27Green Bay Pumping Station - RostokPBK-28KewauneePBK-29Irish Road – at Lake MichiganPBK-51-58KPS ISFSI on the inside of the perimeter fencePBK-71Nuclear Road, 0.6 mile E of Lakeshore RoadPBK-711Nuclear Road, 0.6 mile E of Lakeshore RoadPBK-711Nuclear Road, 0.6 mile E of Lakeshore RoadPBK-713Highway 42, 0.6 mile N of Tapawingo RoadPBK-714Two Creeks Road, 0.1 mile E of Highway 42PBK-715Junction of Lakeshore Road and TapawingoPBK-716Cty V, 0.5 mile W of Hwy 42PBK-717Road	PBK-3	Two Creeks Town Hall
PBK-5Two Creeks Park; NW corner of propertyPBK-5Two Creeks Park; NW corner of propertyPBK-7WPSC substation, Cty VPBK-8P lihenfeldt farmPBK-9Point Beach, meteorological towerPBK-10aPoint Beach, entrancePBK-11Two Creeks International HarvesterPBK-12Kewaunee, effluent channelPBK-12Kewaunee, effluent channelPBK-12Kewaunee, effluent channel, 500 feet NPBK-12Kewaunee, effluent channel, 500 feet NPBK-12Kewaunee, well sitesPBK-12Kewaunee, well sitesPBK-17Green Bay Pumping Station - RostokPBK-18Kewaunee, meteorological towerPBK-24L. Struck farmPBK-25Irish Road – at Lake MichiganPBK-51-58KPS ISFSI on outside of perimeter fencePBK-710Nuclear Road, 0.6 mile E of Lakeshore RoadPBK-711Nuclear Road, 0.6 mile N of Nuclear RoadPBK-712Highway 42, 0.6 mile N of Nuclear RoadPBK-713Highway 42, 0.3 mile N of Nuclear RoadPBK-714Yu Coreeks Road, 0.1 mile E of Highway 42PBK-715Junction of Lakeshore Road and TapawingoPBK-716Cty V, 0.5 mile W of Hwy 42PBK-717Road	PBK-3	Two Creeks Town Hall
PBK-5Two Creeks Park; NW corner of propertyPBK-7WPSC substation, Cty VPBK-8P Inlenfeldt farmPBK-9Point Beach, meteorological towerPBK-10aPoint Beach, effluent channelPBK-10bPoint Beach, effluent channelPBK-11Two Creeks International HarvesterPBK-12aKewaunee, effluent channelPBK-12bKewaunee, effluent channel, 500 feet NPBK-12cKewaunee, effluent channel, 500 feet SPBK-12dKewaunee, well sitesPBK-12dKewaunee, well sitesPBK-12dKewaunee, meteorological towerPBK-13Green Bay Pumping Station - RostokPBK-14Nuclear Road – feld east of parking lotPBK-15Kewaunee, meteorological towerPBK-26KewauneePBK-27Green Bay Pumping Station - RostokPBK-28KewauneePBK-29Irish Road – at Lake MichiganPBK-29Irish Road – at Lake MichiganPBK-71-8Point Beach north property line, LakeshorePBK-71RoadPBK-710Nuclear Road, 0.6 mile E of Lakeshore RoadPBK-711Hudear Road, 0.1 mile E of Lakeshore RoadPBK-712Highway 42, 0.3 mile N of Tapawingo RoadPBK-713Junction of Lakeshore Road and Ravine DrivePBK-714Two Creeks Road, 0.1 mile E of Highway 42PBK-715Junction of Lakeshore Road and Ravine DrivePBK-716Cy V, 0.5 mile W of Hwy 42PBK-717Read	PBK-4	Residence north property line - Point Beach
PBK-7WPSC substation, Cty VPBK-8P Ihlenfeldt farmPBK-9Point Beach, meteorological towerPBK-10aPoint Beach, effluent channelPBK-10bPoint Beach, entrancePBK-11Two Creeks International HarvesterPBK-12cKewaunee, effluent channel, 500 feet NPBK-12bKewaunee, effluent channel, 500 feet SPBK-12cKewaunee, effluent channel, 500 feet SPBK-12dKewaunee, well sitesPBK-12dKewaunee, well sitesPBK-12dKewaunee, meteorological towerPBK-13fGreen Bay Pumping Station - RostokPBK-14Nuclear Road – field east of parking lotPBK-24L. Struck farmPBK-25KewauneePBK-26KewauneePBK-27Green Bay Pumping Station - RostokPBK-18KewauneePBK-29Irish Road – at Lake MichiganPBK-51-58KFS ISFSI on outside of perimeter fencePBK-71-8Point Beach ISFSI on outside of perimeter fencePBK-718RoadPBK-719Nuclear Road, 0.6 mile E of Lakeshore RoadPBK-711Nuclear Road, 0.1 mile E of Lakeshore RoadPBK-712Highway 42, 0.6 mile N of Nuclear RoadPBK-713Highway 42, 0.3 mile N of Tapawingo RoadPBK-714Two Creeks Road, 0.1 mile E of Highway 42PBK-715Junction of Lakeshore Road and Ravine DrivePBK-716Cy V, 0.5 mile W of Hwy 42 Junction of Saxonbury Road and TapawingoPBK-717Road	PBK-5	Two Creeks Park; NW corner of property
PBK-8P Inlenfeldt farmPBK-9Point Beach, meteorological towerPBK-10aPoint Beach, effluent channelPBK-10bPoint Beach, entrancePBK-11Two Creeks International HarvesterPBK-12aKewaunee, effluent channelPBK-12bKewaunee, effluent channelPBK-12cKewaunee, effluent channel, 500 feet NPBK-12cKewaunee, effluent channel, 500 feet SPBK-12dKewaunee, well sitesPBK-12dKewaunee, well sitesPBK-17Green Bay Pumping Station - RostokPBK-18Kewaunee, meteorological towerPBK-24L. Struck farmPBK-25KewauneePBK-26KewauneePBK-17Green Bay Pumping Station - RostokPBK-28KewauneePBK-29Irish Road – at Lake MichiganPBK-29Irish Road – at Lake MichiganPBK-51-58KPS ISFSI on outside of perimeter fencePBK-71Nuclear Road, 0.6 mile E of LakeshorePBK-711Nuclear Road, 0.6 mile E of Lakeshore RoadPBK-712Highway 42, 0.6 mile E of Lakeshore RoadPBK-713Highway 42, 0.3 mile N of Tapawingo RoadPBK-714Two Creeks Road, 0.1 mile E of Highway 42PBK-715Junction of Saxonbury Road and TapawingoPBK-716Cty V, 0.5 mile W of Hwy 42PBK-717Road	PBK-5	Two Creeks Park; NW corner of property
PBK-9Point Beach, meteorological towerPBK-10aPoint Beach, effluent channelPBK-11bTwo Creeks International HarvesterPBK-12aKewaunee, effluent channelPBK-12bKewaunee, effluent channel, 500 feet NPBK-12cKewaunee, effluent channel, 500 feet SPBK-12cKewaunee, well sitesPBK-12dKewaunee, well sitesPBK-17Green Bay Pumping Station - RostokPBK-18Kewaunee, meteorological towerPBK-26KewauneePBK-27Green Bay Pumping Station - RostokPBK-28L. Struck farmPBK-29Irish Road – at Lake MichiganPBK-29Irish Road – at Lake MichiganPBK-710Nuclear Road, 0.6 mile E of LakeshorePBK-711Nuclear Road, 0.6 mile E of Lakeshore RoadPBK-712Highway 42, 0.6 mile N of Nuclear RoadPBK-713Highway 42, 0.3 mile N of Tapawingo RoadPBK-714Two Creeks Road, 0.1 mile E of Highway 42PBK-715Junction of Lakeshore Road and Rayine DrivePBK-714Creeks Road, 0.1 mile E of Highway 42PBK-715Junction of Saxonbury Road and TapawingoPBK-717Road	PBK-7	WPSC substation, Cty V
PBK-10aPoint Beach, effluent channelPBK-10bPoint Beach, entrancePBK-111Two Creeks International HarvesterPBK-122Kewaunee, effluent channelPBK-123Kewaunee, effluent channel, 500 feet NPBK-124Kewaunee, effluent channel, 500 feet SPBK-125Kewaunee, effluent channel, 500 feet SPBK-126Kewaunee, well sitesPBK-127Green Bay Pumping Station - RostokPBK-17Green Bay Pumping Station - RostokPBK-18Kewaunee, meteorological towerPBK-24L. Struck farmPBK-25KewauneePBK-26KewauneePBK-27Irish Road – at Lake MichiganPBK-17Point Beach ISFSI on outside of perimeter fencePBK-171Nuclear Road, 0.6 mile E of LakeshorePBK-171Nuclear Road, 0.6 mile E of Lakeshore RoadPBK-171Nuclear Road, 0.1 mile E of Lakeshore RoadPBK-171Highway 42, 0.3 mile N of Tapawingo RoadPBK-174Two Creeks Road, 0.1 mile E of Highway 42PBK-175Junction of Lakeshore Road and Ravine DrivePBK-176Cty V, 0.5 mile W of Hwy 42PBK-177Road	PBK-8	P Ihlenfeldt farm
PBK-10bPoint Beach, entrancePBK-11Two Creeks International HarvesterPBK-12Kewaunee, effluent channelPBK-12bKewaunee, effluent channel, 500 feet NPBK-12cKewaunee, effluent channel, 500 feet SPBK-12dKewaunee, effluent channel, 500 feet SPBK-12dKewaunee, well sitesPBK-14Nuclear Road – field east of parking lotPBK-17Green Bay Pumping Station - RostokPBK-17Green Bay Pumping Station - RostokPBK-18Kewaunee, meteorological towerPBK-24L. Struck farmPBK-26KewauneePBK-27Irish Road – at Lake MichiganPBK-28KPS ISFSI on the inside of the perimeter fencePBK-71aPoint Beach STSI on outside of perimeter fencePBK-710Nuclear Road, 0.6 mile E of Lakeshore RoadPBK-711Nuclear Road, 0.6 mile E of Lakeshore RoadPBK-712Highway 42, 0.3 mile N of Nuclear RoadPBK-713Highway 42, 0.3 mile N of Tapawingo RoadPBK-714Two Creeks Road, 0.1 mile E of Highway 42PBK-715Junction of Lakeshore Road and Ravine DrivePBK-716Cty V, 0.5 mile W of Hwy 42PBK-717Road	PBK-9	Point Beach, meteorological tower
PBK-11Two Creeks International HarvesterPBK-12aKewaunee, effluent channelPBK-12bKewaunee, effluent channel, 500 feet NPBK-12cKewaunee, effluent channel, 500 feet SPBK-12dKewaunee, well sitesPBK-12dKewaunee, well sitesPBK-17Green Bay Pumping Station - RostokPBK-17Green Bay Pumping Station - RostokPBK-17Green Bay Pumping Station - RostokPBK-18Kewaunee, meteorological towerPBK-24L. Struck farmPBK-25KewauneePBK-26KewauneePBK-27Irish Road - at Lake MichiganPBK-51-58KPS ISFSI on the inside of the perimeter fencePBK-71Point Beach ISFSI on outside of perimeter fencePBK-71Nuclear Road, 0.6 mile E of Lakeshore RoadPBK-711Nuclear Road, 0.1 mile E of Lakeshore RoadPBK-713Highway 42, 0.5 mile N of Tapawingo RoadPBK-714Two Creeks Road, 0.1 mile E of Highway 42PBK-715Junction of Lakeshore Road and Ravine DrivePBK-716City V, 0.5 mile W of Hwy 42PBK-717Road	PBK-10a	Point Beach, effluent channel
PBK-12aKewaunee, effluent channelPBK-12bKewaunee, effluent channel, 500 feet NPBK-12cKewaunee, effluent channel, 500 feet SPBK-12dKewaunee, well sitesPBK-12dKewaunee, well sitesPBK-17Green Bay Pumping Station - RostokPBK-17Green Bay Pumping Station - RostokPBK-18Kewaunee, meteorological towerPBK-24L. Struck farmPBK-29Irish Road – at Lake MichiganPBK-51-58KPS ISFSI on the inside of the perimeter fencePBK-714Point Beach ISFSI on outside of perimeter fencePBK-715RoadPBK-711Nuclear Road, 0.6 mile E of Lakeshore RoadPBK-712Highway 42, 0.6 mile N of Nuclear RoadPBK-713Highway 42, 0.3 mile N of Tapawingo RoadPBK-714Two Creeks Road, 0.1 mile E of Highway 42PBK-715Junction of Lakeshore RoadPBK-716City V, 0.5 mile W of Hwy 42 Junction of Saxonbury Road and TapawingoPBK-717Road	PBK-10b	Point Beach, entrance
PBK-12bKewaunee, effluent channel, 500 feet NPBK-12cKewaunee, effluent channel, 500 feet SPBK-12cKewaunee, well sitesPBK-14Nuclear Road – field east of parking lotPBK-17Green Bay Pumping Station - RostokPBK-17Green Bay Pumping Station - RostokPBK-18Kewaunee, meteorological towerPBK-24L. Struck farmPBK-29Irish Road – at Lake MichiganPBK-29Irish Road – at Lake MichiganPBK-17.8Point Beach ISFSI on outside of perimeter fencePBK-18Point Beach ISFSI on outside of perimeter fencePBK-19RoadPBK-11Nuclear Road, 0.6 mile E of LakeshorePBK-11Nuclear Road, 0.1 mile E of Lakeshore RoadPBK-11Highway 42, 0.6 mile N of Nuclear RoadPBK-113Highway 42, 0.3 mile N of Tapawingo RoadPBK-114Two Creeks Road, 0.1 mile E of Highway 42PBK-115Junction of Lakeshore Road and Ravine DrivePBK-116City V, 0.5 mile W of Hwy 42Junction of Saxonbury Road and TapawingoPBK-117Road	PBK-11	Two Creeks International Harvester
PBK-12cKewaunee, effluent channel, 500 feet SPBK-12dKewaunee, well sitesPBK-12dNuclear Road – field east of parking lotPBK-17Green Bay Pumping Station - RostokPBK-17Green Bay Pumping Station - RostokPBK-18Kewaunee, meteorological towerPBK-24L. Struck farmPBK-25KewauneePBK-26KewauneePBK-27Irish Road – at Lake MichiganPBK-51-58KPS ISFSI on the inside of the perimeter fencePBK-718Point Beach north property line, LakeshorePBK-719RoadPBK-711Nuclear Road, 0.6 mile E of Lakeshore RoadPBK-712Highway 42, 0.3 mile N of Tapawingo RoadPBK-714Two Creeks Road, 0.1 mile E of Highway 42PBK-715Junction of Lakeshore Road and Ravine DrivePBK-716Cty V, 0.5 mile W of Hwy 42 Junction of Saxonbury Road and TapawingoPBK-717Road	PBK-12a	Kewaunee, effluent channel
PBK-12dKewaunee, well sitesPBK-14Nuclear Road – field east of parking lotPBK-17Green Bay Pumping Station - RostokPBK-17Green Bay Pumping Station - RostokPBK-18Kewaunee, meteorological towerPBK-24L. Struck farmPBK-25KewauneePBK-29Irish Road – at Lake MichiganPBK-51-58KPS ISFSI on the inside of the perimeter fencePBK-718Point Beach ISFSI on outside of perimeter fencePBK-719RoadPBK-710Nuclear Road, 0.6 mile E of LakeshorePBK-711Nuclear Road, 0.1 mile E of Lakeshore RoadPBK-713Highway 42, 0.3 mile N of Tapawingo RoadPBK-714Two Creeks Road, 0.1 mile E of Highway 42PBK-715Junction of Lakeshore Road and Ravine DrivePBK-716Cty V, 0.5 mile W of Hwy 42Junction of Saxonbury Road and TapawingoPBK-717Road	PBK-12b	Kewaunee, effluent channel, 500 feet N
PBK-14Nuclear Road – field east of parking lotPBK-17Green Bay Pumping Station - RostokPBK-17Green Bay Pumping Station - RostokPBK-18Kewaunee, meteorological towerPBK-24L. Struck farmPBK-25KewauneePBK-29Irish Road – at Lake MichiganPBK-51-58KPS ISFSI on the inside of the perimeter fencePBK-71Point Beach ISFSI on outside of perimeter fencePBK-73RoadPBK-74Nuclear Road, 0.6 mile E of LakeshorePBK-711Nuclear Road, 0.6 mile E of Lakeshore RoadPBK-712Highway 42, 0.6 mile N of Nuclear RoadPBK-713Highway 42, 0.3 mile N of Tapawingo RoadPBK-714Two Creeks Road, 0.1 mile E of Highway 42PBK-715Junction of Lakeshore Road and Ravine DrivePBK-716Cty V, 0.5 mile W of Hwy 42 Junction of Saxonbury Road and TapawingoPBK-717Road	PBK-12c	Kewaunee, effluent channel, 500 feet S
PBK-17Green Bay Pumping Station - RostokPBK-17Green Bay Pumping Station - RostokPBK-18Kewaunee, meteorological towerPBK-24L. Struck farmPBK-26KewauneePBK-29Irish Road – at Lake MichiganPBK-51-58KPS ISFSI on the inside of the perimeter fencePBK-71Point Beach ISFSI on outside of perimeter fencePBK-79RoadPBK-710Nuclear Road, 0.6 mile E of Lakeshore RoadPBK-711Nuclear Road, 0.1 mile E of Lakeshore RoadPBK-713Highway 42, 0.3 mile N of Tapawingo RoadPBK-714Two Creeks Road, 0.1 mile E of Highway 42PBK-715Junction of Lakeshore Road and Ravine DrivePBK-716Cty V, 0.5 mile W of Hwy 42 Junction of Saxonbury Road and TapawingoPBK-717Road	PBK-12d	Kewaunee, well sites
PBK-17Green Bay Pumping Station - RostokPBK-18Kewaunee, meteorological towerPBK-24L. Struck farmPBK-26KewauneePBK-29Irish Road – at Lake MichiganPBK-51-58KPS ISFSI on the inside of the perimeter fencePBK-T1-8Point Beach ISFSI on outside of perimeter fencePBK-T9RoadPBK-T10Nuclear Road, 0.6 mile E of Lakeshore RoadPBK-T11Nuclear Road, 0.1 mile E of Lakeshore RoadPBK-T12Highway 42, 0.6 mile N of Nuclear RoadPBK-T13Highway 42, 0.3 mile N of Tapawingo RoadPBK-T14Two Creeks Road, 0.1 mile E of Highway 42PBK-T15Junction of Lakeshore Road and Ravine DrivePBK-T16Cty V, 0.5 mile W of Hwy 42 Junction of Saxonbury Road and TapawingoPBK-T17Road	PBK-14	Nuclear Road – field east of parking lot
PBK-18Kewaunee, meteorological towerPBK-24L. Struck farmPBK-26KewauneePBK-29Irish Road – at Lake MichiganPBK-51-58KPS ISFSI on the inside of the perimeter fencePBK-51-58KPS ISFSI on outside of perimeter fencePBK-T1-8Point Beach ISFSI on outside of perimeter fencePBK-T9RoadPBK-T10Nuclear Road, 0.6 mile E of Lakeshore RoadPBK-T11Nuclear Road, 0.1 mile E of Lakeshore RoadPBK-T12Highway 42, 0.6 mile N of Nuclear RoadPBK-T13Highway 42, 0.3 mile N of Tapawingo RoadPBK-T14Two Creeks Road, 0.1 mile E of Highway 42PBK-T15Junction of Lakeshore Road and Ravine DrivePBK-T16Cty V, 0.5 mile W of Hwy 42PBK-T17Road	PBK-17	Green Bay Pumping Station - Rostok
PBK-24L. Struck farmPBK-26KewauneePBK-29Irish Road – at Lake MichiganPBK-29Irish Road – at Lake MichiganPBK-51-58KPS ISFSI on the inside of the perimeter fencePBK-51-58KPS ISFSI on outside of perimeter fencePBK-T1-8Point Beach ISFSI on outside of perimeter fencePBK-T9RoadPBK-T10Nuclear Road, 0.6 mile E of Lakeshore RoadPBK-T11Nuclear Road, 0.1 mile E of Lakeshore RoadPBK-T12Highway 42, 0.6 mile N of Nuclear RoadPBK-T13Highway 42, 0.3 mile N of Tapawingo RoadPBK-T14Two Creeks Road, 0.1 mile E of Highway 42PBK-T15Junction of Lakeshore Road and Ravine DrivePBK-T16Cty V, 0.5 mile W of Hwy 42 Junction of Saxonbury Road and TapawingoPBK-T17Road	PBK-17	Green Bay Pumping Station - Rostok
PBK-26KewauneePBK-29Irish Road – at Lake MichiganPBK-51-58KPS ISFSI on the inside of the perimeter fencePBK-T1-8Point Beach ISFSI on outside of perimeter fence Point Beach north property line, LakeshorePBK-T9RoadPBK-T10Nuclear Road, 0.6 mile E of Lakeshore RoadPBK-T11Nuclear Road, 0.1 mile E of Lakeshore RoadPBK-T12Highway 42, 0.6 mile N of Nuclear RoadPBK-T13Highway 42, 0.3 mile N of Tapawingo RoadPBK-T14Two Creeks Road, 0.1 mile E of Highway 42PBK-T15Junction of Lakeshore Road and Ravine DrivePBK-T16Cty V, 0.5 mile W of Hwy 42 Junction of Saxonbury Road and TapawingoPBK-T17Road	PBK-18	Kewaunee, meteorological tower
PBK-29Irish Road – at Lake MichiganPBK-51-58KPS ISFSI on the inside of the perimeter fencePBK-T1-8Point Beach ISFSI on outside of perimeter fence Point Beach north property line, LakeshorePBK-T9RoadPBK-T10Nuclear Road, 0.6 mile E of Lakeshore RoadPBK-T11Nuclear Road, 0.1 mile E of Lakeshore RoadPBK-T12Highway 42, 0.6 mile N of Nuclear RoadPBK-T13Highway 42, 0.3 mile N of Tapawingo RoadPBK-T14Two Creeks Road, 0.1 mile E of Highway 42PBK-T15Junction of Lakeshore Road and Ravine DrivePBK-T16Cty V, 0.5 mile W of Hwy 42 Junction of Saxonbury Road and TapawingoPBK-T17Road	PBK-24	L. Struck farm
PBK-51-58KPS ISFSI on the inside of the perimeter fencePBK-T1-8Point Beach ISFSI on outside of perimeter fence Point Beach north property line, LakeshorePBK-T9RoadPBK-T10Nuclear Road, 0.6 mile E of Lakeshore RoadPBK-T11Nuclear Road, 0.1 mile E of Lakeshore RoadPBK-T12Highway 42, 0.6 mile N of Nuclear RoadPBK-T13Highway 42, 0.3 mile N of Tapawingo RoadPBK-T14Two Creeks Road, 0.1 mile E of Highway 42PBK-T15Junction of Lakeshore Road and Ravine DrivePBK-T16Cty V, 0.5 mile W of Hwy 42 Junction of Saxonbury Road and TapawingoPBK-T17Road	PBK-26	Kewaunee
PBK-T1-8Point Beach ISFSI on outside of perimeter fence Point Beach north property line, LakeshorePBK-T9RoadPBK-T10Nuclear Road, 0.6 mile E of Lakeshore RoadPBK-T11Nuclear Road, 0.1 mile E of Lakeshore RoadPBK-T12Highway 42, 0.6 mile N of Nuclear RoadPBK-T13Highway 42, 0.3 mile N of Tapawingo RoadPBK-T14Two Creeks Road, 0.1 mile E of Highway 42PBK-T15Junction of Lakeshore Road and Ravine DrivePBK-T16Cty V, 0.5 mile W of Hwy 42 Junction of Saxonbury Road and TapawingoPBK-T17Road	PBK-29	Irish Road – at Lake Michigan
Point Beach north property line, Lakeshore RoadPBK-T9RoadPBK-T10Nuclear Road, 0.6 mile E of Lakeshore RoadPBK-T11Nuclear Road, 0.1 mile E of Lakeshore RoadPBK-T12Highway 42, 0.6 mile N of Nuclear RoadPBK-T13Highway 42, 0.3 mile N of Tapawingo RoadPBK-T14Two Creeks Road, 0.1 mile E of Highway 42PBK-T15Junction of Lakeshore Road and Ravine DrivePBK-T16Cty V, 0.5 mile W of Hwy 42 Junction of Saxonbury Road and TapawingoPBK-T17Road	PBK-51-58	KPS ISFSI on the inside of the perimeter fence
PBK-T10Nuclear Road, 0.6 mile E of Lakeshore RoadPBK-T11Nuclear Road, 0.1 mile E of Lakeshore RoadPBK-T12Highway 42, 0.6 mile N of Nuclear RoadPBK-T13Highway 42, 0.3 mile N of Tapawingo RoadPBK-T14Two Creeks Road, 0.1 mile E of Highway 42PBK-T15Junction of Lakeshore Road and Ravine DrivePBK-T16Cty V, 0.5 mile W of Hwy 42 Junction of Saxonbury Road and TapawingoPBK-T17Road		Point Beach north property line, Lakeshore
PBK-T11Nuclear Road, 0.1 mile E of Lakeshore RoadPBK-T12Highway 42, 0.6 mile N of Nuclear RoadPBK-T13Highway 42, 0.3 mile N of Tapawingo RoadPBK-T14Two Creeks Road, 0.1 mile E of Highway 42PBK-T15Junction of Lakeshore Road and Ravine DrivePBK-T16Cty V, 0.5 mile W of Hwy 42 Junction of Saxonbury Road and TapawingoPBK-T17Road		
PBK-T12Highway 42, 0.6 mile N of Nuclear RoadPBK-T13Highway 42, 0.3 mile N of Tapawingo RoadPBK-T14Two Creeks Road, 0.1 mile E of Highway 42PBK-T15Junction of Lakeshore Road and Ravine DrivePBK-T16Cty V, 0.5 mile W of Hwy 42 Junction of Saxonbury Road and TapawingoPBK-T17Road	-	
PBK-T13Highway 42, 0.3 mile N of Tapawingo RoadPBK-T14Two Creeks Road, 0.1 mile E of Highway 42PBK-T15Junction of Lakeshore Road and Ravine DrivePBK-T16Cty V, 0.5 mile W of Hwy 42 Junction of Saxonbury Road and TapawingoPBK-T17Road		
PBK-T14Two Creeks Road, 0.1 mile E of Highway 42PBK-T15Junction of Lakeshore Road and Ravine DrivePBK-T16Cty V, 0.5 mile W of Hwy 42 Junction of Saxonbury Road and TapawingoPBK-T17Road	PBK-T13	
PBK-T15Junction of Lakeshore Road and Ravine DrivePBK-T16Cty V, 0.5 mile W of Hwy 42 Junction of Saxonbury Road and TapawingoPBK-T17Road		
Junction of Saxonbury Road and Tapawingo PBK-T17 Road	PBK-T15	
Junction of Saxonbury Road and Tapawingo PBK-T17 Road	PBK-T16	
Sample Point Location Description	PBK-T17	Junction of Saxonbury Road and Tapawingo
	Sample Point	Location Description

PBK-T18	Zander Road, 0.1 mile W on Tannery Road
PBK-T20	Junction of Cty BB and Ratajcsak Lane
PBK-T28	Kewaunee, South on Hwy 42 Two Rivers, Junction of Hwy 42 and 34th
PBK-T29	Avenue Manitowoc, Hwy 42, Two Rivers Chamber of
PBK-T30	Commerce
PBK-T31	Mishicot, Cty V, in front of house #653
PBK-T51	KPS ISFSI on the inside of the perimeter fence
PBK-T52	KPS ISFSI on the inside of the perimeter fence
PBK-T53	KPS ISFSI on the inside of the perimeter fence
PBK-T54	KPS ISFSI on the inside of the perimeter fence
PBK-T55	KPS ISFSI on the inside of the perimeter fence
PBK-T56	KPS ISFSI on the inside of the perimeter fence
PBK-T57	KPS ISFSI on the inside of the perimeter fence
PBK-T58	KPS ISFSI on the inside of the perimeter fence