Validating Evidence-Based Practices – How to Teach an Old Dog New Tricks

Charles E. Edmiston Jr., PhD., CIC
Emeritus Professor of Surgery
Department of Surgery
Medical College of Wisconsin
Milwaukee, Wisconsin USA
edmiston@mcw.edu
Risk Reduction Requires an Understanding of the Mechanistic Factors which Potentiate the Risk of Infection in the Surgical Patient Population
Risk is a Myriad of Events - SSI Fishbone Diagram

Pre-Operative Factors
- Lack of Hand Hygiene
- Patient Body Colonization
- Lack of Pre-Op Shower

Peri-Operative Team Factors
- Lack of Traffic Control - Too Many in room
- Improper Surgical Hand Antisepsis
- Improper Surgical Attire
- Unsterile Instruments
- Use of Staples or Steri-Strips
- Contaminated Environment
- Inadequate Surgical Prophylaxis
- Surgical Irrigation
- Non-Coated Sutures

Organizational and Management Factors
- Poor Communication Among Team
- Financial Constraints
- Poor Leadership
- Increase Hospitalization Days

Patient Factors
- MRSA or MSSA Nasal Colonization
- Infection at Another Site
- Obese
- Diabetic
- Smoker
- Immunosuppressive Agents

Surgeon Technique
- Use of Drains
- Lack of Re-Doosing of Antibiotic
- Poor Surgical Technique

Work Environment Factors
- Poor Staff Levels
- Design, Availability and Maintenance of Equipment
- Workload and Shift Patterns
- Environment and Physical Plant Problems (Air Handling System)

Care Delivery Problems (CDP's)
- Lack of Discontinuation of Antibiotics at 24 hrs
- Contaminated Environment
- Lack of Hand Hygiene
- Contamination of Incision Post-Op
- Inadequate Staffing for Post-Op Care
- Lack of Foley Catheter removal Within 48 hrs
“Every operation is an experiment in bacteriology”

Moynihan

Br J Surgery 1920; 8: 27-35

“It’s all about the surgical wound”

“….all surgical wounds are contaminated to some degree at closure – the primary determinant of whether the contamination is established as a clinical infection is host (wound) defense”

Belda et al., JAMA 2005; 294:2035-2042
Evidence-Based Hierarchy

- Systematic Reviews and Meta-analyses
- Randomized Controlled Double Blind Studies
- Cohort Studies
- Case Control Studies
- Case Series
- Case Reports
- Ideas, Editorials, Opinions
- Animal research
- In vitro ('test tube') research
Mitigating Risk - Surgical Care Improvement Project (SCIP) – An Evidence-Based “Bundle” Approach

- Timely and appropriate antimicrobial prophylaxis
- Glycemic control in cardiac and vascular surgery
- Appropriate hair removal
- Normothermia in general surgical patients

Is this the Holy Grail?
An Increase in Compliance With the Surgical Care Improvement Project Measures Does Not Prevent Surgical Site Infection in Colorectal Surgery

Pastor et al. Diseases of the Colon & Rectum 2010; 53:24-30
The effect of Surgical Care Improvement Project measures on national trends on surgical site infections in open vascular procedures

Anahita Dua, MD, MS, MBA, Sapan S. Desai, MD, PhD, MBA, Gary R. Seabrook, MD, Kellie R. Brown, MD, Brian D. Lewis, MD, Peter J. Rossi, MD, Charles E. Edmiston, PhD, and Cheong J. Lee, MD, Milwaukee, Wisc, and Springfield, Ill

Objective: The Surgical Care Improvement Project (SCIP) is a national initiative to reduce surgical complications, including postoperative surgical site infection (SSI), through protocol-driven antibiotic usage. This study aimed to determine the effect SCIP guidelines have had on in-hospital SSIs after open vascular procedures.

Methods: The Nationwide Inpatient Sample (NIS) was retrospectively analyzed using International Classification of Diseases, Ninth Revision, diagnosis codes to capture SSIs in hospital patients who underwent elective carotid endarterectomy, elective open repair of an abdominal aortic aneurysm (AAA), and peripheral bypass. The pre-SCIP era was defined as 2000 to 2005 and post-SCIP as 2006 to 2010. The year 2006 was excluded because this was the transition year in which the SCIP guidelines were implemented. Analysis of variance and x^2 testing were used for statistical analysis.

Results: The rate of SSI in the pre-SCIP era was 2.2% compared with 2.3% for carotid endarterectomy ($P = .06$). For peripheral bypass, both in the pre- and post-SCIP era, infection rates were 0.1% ($P = .22$). For open, elective AAA, the rate of infection in the post-SCIP era increased significantly to 1.4% from 1.0% in the pre-SCIP era ($P < .001$). Demographics and in-hospital mortality did not differ significantly between the groups.

Conclusions: Implementation of SCIP guidelines has made no significant effect on the incidence of in-hospital SSIs in open vascular operations; rather, an increase in SSI rates in open AAA repairs was observed. Patient-centered, bundled approaches to care, rather than current SCIP practices, may further decrease SSI rates in vascular patients undergoing open procedures. (J Vasc Surg 2014;60:1635-9.)
Adjunctive Components – The Preadmission Shower from an Evidence-Based Perspective
Preadmission Showering/Cleansing

- Hair Shaft
- Epidermis
- Dermis
- Subcutaneous Layer
- Sebaceous Gland
- Hair follicle
- Sweat Gland
- Hair Bulb
- Coccus
Microbial Ecology of Skin Surface

- Scalp $6.0 \log_{10} \text{cfu/cm}^2$
- Axilla $5.5 \log_{10} \text{cfu/cm}^2$
- Abdomen $4.3 \log_{10} \text{cfu/cm}^2$
- Forearm $4.0 \log_{10} \text{cfu/cm}^2$
- Hands $4.0-6.6 \log_{10} \text{cfu/cm}^2$
- Perineum $7.0-11.0 \log_{10} \text{cfu/cm}^2$
Preoperative bathing or showering with skin antiseptics to prevent surgical site infection (Review)

Webster J, Osborne S

THE COCHRANE COLLABORATION®

This is a reprint of a Cochrane review, prepared and maintained by The Cochrane Collaboration and published in The Cochrane Library 2013, Issue 2

http://www.thecochranelibrary.com

Draft Guideline for the Prevention of Surgical Site Infection

Sandra I. Berrios-Torres, MD1, Craig A. Umscheid, MD, MSCE2, Dale W. Bratzler, DO, MPH3, Brian Leas, MA, MS3, Erin C. Stone, MS1, Rachel R. Kelz, MD, MSCE, FACS2, Caroline Reinke, MD, MPH2, Sherry Morgan, RN, MLS, PhD2, Joseph S. Solomkin, MD4, John E. Mazuski, MD, PhD5, E. Patchen Dellinger, MD6, Kamal Itani, MD7, Elie F. Berbari, MD8, John Segreti, MD9, Javad Parvizi, MD10, Joan Blanchard, MSS, BSN, RN, CNOR, CIC11, George Allen, PhD, CIC, CNOR12, J. A. J. W. Kluymans, MD13, Rodney Donlan, PhD14, William P. Schecter, MD15 and the Healthcare Infection Control Practices Advisory Committee15

1Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, GA; 2Center for Evidence-based Practice, University of Pennsylvania Health System, Philadelphia, PA; 3University of Oklahoma Health Sciences Center, College of Public Health, Oklahoma City, OK; 4University of Cincinnati, University of Cincinnati College of Medicine, Cincinnati, Ohi; 5Washington University, Washington University School of Medicine, Saint Louis, MO; 6University of Washington Medical Center, Seattle, WA; 7Veterans Affairs Boston Healthcare System, Boston, MA; 8Mayo Clinic College of Medicine, Rochester, MN; 9Rush University Medical Center, Chicago, Ill.; 10Rothman Institute, Philadelphia, PA; 11Littleton Adventist Hospital, Quality Department, Denver, CO; 12Downstate Medical Center, Brooklyn, NY; 13Laboratory for Microbiology and Infection Control Amphia Hospital, Breda, the Netherlands; 14University of California, San Francisco, San Francisco General Hospital San Francisco, CA

CDC-HICPAC – March 2014
Critiquing the Evidence for Both Cochrane and CDC Draft Recommendations – 7 Studies Cited

- The seven studies as a collective group expressing a high-level of surgical heterogeneity (Class 1, 2 and 3).

- In 4 of the studies, the patients showered once, in 2 studies patients showered or bathed twice and in one study, the patients showered a total of 3 times.

- Inadequate postoperative SSI surveillance was noted in 5 of the 7 cited studies.

- No written showering instructions or inadequate instructions were noted in 5 of the 7 studies.

- There was no evidence in any of the seven studies that an effort was made to measure patient compliance.

- Only two studies used a standardized method for assessing postoperative wound infection.

- Selective elements of operational bias were noted in 4 of the 7 studies.

- Finally one study was conducted over an extended 6 year period (1978-1984) which may have impacted upon the continuity of patient selection and enrollment.
Mean Chlorhexidine Gluconate (CHG) Skin Surface Concentrations (µg/ml±SD) Compared to MIC$_{90}$ (5 µg/ml) for Staphylococcal Surgical Isolates Including MRSAa

Subgroups (mean C, µg/ml)

<table>
<thead>
<tr>
<th>Groups</th>
<th>Pilotb (4%)</th>
<th>1 (4% Aqueous)</th>
<th>2 (2% Cloths)</th>
<th>$[C_{CHG}/MIC_{90}]$</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A (20)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>evening (1X)</td>
<td>3.7±2.5</td>
<td>24.4±5.9</td>
<td>436.1±91.2</td>
<td>0.9</td>
<td>4.8</td>
</tr>
<tr>
<td>Group B (20)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>morning (1X)</td>
<td>7.8±5.6</td>
<td>79.2±26.5</td>
<td>991.3±58.2</td>
<td>1.9</td>
<td>15.8</td>
</tr>
<tr>
<td>Group C (20)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>both (2X)</td>
<td>9.9±7.1</td>
<td>126.4±19.4</td>
<td>1745.5±204.3</td>
<td>2.5</td>
<td>25.3</td>
</tr>
</tbody>
</table>

a N = 90

b Pilot group N = 30

Edmiston et al, AORNJ 2010;92:509-518
Measuring Patient Compliance

- All patients undergoing elective surgical procedures take 2 CHG preadmission showers/cleansing
- 100 random orthopaedic and general surgical patients queried as to whether or not they complied with preoperative instructions (2012)
- 71 indicated that they had taken two showers/cleansing
- 19 indicated that they took one shower (morning prior to admission 15/19)
- 10 indicated they did not use CHG at all
- Reasons for non-compliance
 - Didn’t realize it was that important (institutional failure - communication)
 - Forgot (patient failure - low priority/apathy)
 - Thought one shower would be sufficient (patient - institutional failure)

Could an electronic alert system (SMS-texting) improve patient compliance?
Empowering the Surgical Patient: A Randomized, Prospective Analysis of an Innovative Strategy for Improving Patient Compliance with Preadmission Showering Protocol

Charles E Edmiston Jr, PhD, Candace J Krepel, MS, Sarah E Edmiston, MEd, Maureen Spencer, MEd, Cheong Lee, MD, Kellie R Brown, MD, FACS, Brian D Lewis, MD, FACS, Peter J Rossi, MD, FACS, Michael Malinowski, MD, Gary Seabrook, MD, FACS

BACKGROUND: Surgical site infections (SSIs) are responsible for significant morbidity, mortality, and excess use of health care resources. The preadmission antiseptic shower is accepted as an effective strategy for reducing the risk for SSIs. The study analyzes the benefit of an innovative electronic patient alert system (EAS) for enhancing compliance with a preadmission showering protocol with 4% chlorhexidine gluconate (CHG).

STUDY DESIGN: After providing informed consent, 80 volunteers were randomized to 4 CHG showering groups. Groups A1 and A2 showered twice. Group A1 was prompted to shower via EAS. Groups B1 and B2 showered 3 times. Group B1 was prompted via EAS. Subjects in groups A2 and B2 were not prompted (non-EAS groups). Skin-surface concentrations of CHG (μg/mL) were analyzed using colorimetric assay at 5 separate anatomic sites. Study personnel were blinded to the randomization code; after final volunteer processing, the code was broken and individual groups were analyzed.

RESULTS: Mean composite CHG skin-surface concentrations were significantly higher (p < 0.007) in EAS groups A1 (30.9 ± 8.8 μg/mL) and B1 (29.0 ± 8.3 μg/mL) compared with non-EAS groups A2 (10.5 ± 3.9 μg/mL) and B2 (9.5 ± 3.1 μg/mL). Overall, 66% and 67% reductions in CHG skin-surface concentrations were observed in non-EAS groups A2 and B2 compared with EAS study groups. Analysis of returned (unused) CHG (mL) suggests that a wide variation in volume of biocide was used per shower in all groups.

CONCLUSIONS: The findings suggest that EAS was effective in enhancing patient compliance with a preadmission showering protocol, resulting in a significant (p < 0.007) increase in skin-surface concentrations of CHG compared with non-EAS controls. However, variation in amount of unused 4% CHG suggests that rigorous standardization is required to maximize the benefits of this patient-centric interventional strategy. (J Am Coll Surg 2014;219:256–264. © 2014 by the American College of Surgeons)

In 2010, the CDC reported that a total of 51.4 million inpatient surgical procedures were performed in the United States.1 It is estimated that approximately 400,000 surgical site infections (SSIs) occur in the United States each year, with an associated mortality rate approaching 25% (n = 100,000).2 These numbers have historically been extrapolated from inpatient procedures alone, therefore, the actual number of SSIs is likely to be much higher because recent CDC data suggest that >34 million surgical procedures are performed in outpatient US ambulatory surgical centers.3 Postoperative SSIs, in addition to having an adverse impact on patient outcomes, also contribute to increased use of hospital-based resources, which has a negative impact on the fiscal health of the institution. The evolution of the

Disclosure Information: This study was supported in part by a grant to Dr Edmiston from CareFusion. All other authors have nothing to disclose.

Received November 8, 2013; Revised January 26, 2014; Accepted January 27, 2014.
From the Department of Surgery, Division of Vascular Surgery, Surgical Microbiology Research Laboratory, Medical College of Wisconsin.
Looking at the Preadmission Shower from a Pharmacokinetic Perspective

- Dose
- Duration
- Timing
Original Investigation

Evidence for a Standardized Preadmission Showering Regimen to Achieve Maximal Antiseptic Skin Surface Concentrations of Chlorhexidine Gluconate, 4%, in Surgical Patients

Charles E. Edmiston Jr, PhD; Cheong J. Lee, MD; Candace J. Krepel, MS; Maureen Spencer, MEd; David Leaper, MD; Kellie R. Brown, MD; Brian D. Lewis, MD; Peter J. Rossi, MD; Michael J. Malinowski, MD; Gary R. Seabrook, MD

IMPORTANCE To reduce the amount of skin surface bacteria for patients undergoing elective surgery, selective health care facilities have instituted a preadmission antiseptic skin cleansing protocol using chlorhexidine gluconate. A Cochrane Collaborative review suggests that existing data do not justify preoperative skin cleansing as a strategy to reduce surgical site infection.
Comparison of Mean Chlorhexidine Gluconate Skin-Surface Concentrations (µg/mL) of 4% Chlorhexidine Gluconate for Combined Anatomic Sites in Groups A (N=60) and B (N=60)a

<table>
<thead>
<tr>
<th>Study Groups: (N=120)b</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shower 2X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shower 3X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Edmiston et al. JAMA-Surgery August 26, 2015
Is chlorhexidine gluconate showering with a standardized regimen the answer to SSI prevention? Not in and of itself. Should a promising, safe, low-cost intervention be part of the answer? Yes. If we limit interventions to those with definitive, high-quality evidence, then our efforts to reduce SSIs will certainly be a wash.
Composite Mean Skin Surface Concentrations of Chlorhexidine Gluconate 2%, Following Multiple Applications (5 Separate Anatomic Sites)

To Bathe or Not to Bathe With Chlorhexidine Gluconate: Is It Time to Take a Stand for Preadmission Bathing and Cleansing?

CHARLES E. EDMISTON JR, PhD, MS, BS, CIC, FIDSA, FSHEA; OJAN ASSADIAN, MD, DTM&H; MAUREEN SPENCER, MEd, BSN, CIC; RUSSELL N. OLMSTED, MPH, BS, CIC; SUE BARNES, BSN, RN, CIC; DAVID LEAPER, MD, ChM, FRCS, FACS, FLS

Many health care facilities have incorporated an antiseptic skin cleansing protocol, often referred to as preoperative bathing and cleansing, to reduce the endogenous microbial burden on the skin of patients undergoing elective surgery, with the aim of reducing the risk of surgical site infections (SSIs). According to a recent study by Injean et al., 91% of facilities that perform coronary artery bypass surgery in California have a standardized preoperative bathing and cleansing protocol for patients. Historically, this practice has been endorsed by national and international organizations, such as the Hospital Infection Control Practice Advisory Committee and the Center for Disease Control and Prevention, the Association for Professionals in Infection Control and Epidemiology (APIC), the Institute for Healthcare Improvement (IHI), and the National Institute for Health and Care Excellence (NICE), which recommend bathing and/or cleansing with an antiseptic agent before surgery as a component of a broader strategy to reduce SSIs. The 2008 Society for Healthcare Epidemiology of America (SHEA)/Infectious Diseases Society of America (IDSA)/Surgical Infection Society (SIS) strategies to prevent SSIs in acute care hospitals declined to recommend a specific application policy regarding selection of an antiseptic agent for preoperative bathing but acknowledged that the (maximal) antiseptic benefits of chlorhexidine gluconate (CHG) are dependent on achieving adequate skin surface concentrations.

Findings in reports published in the past 10 years have identified SSIs to be the most common health care–associated infection (HAI) and the most expensive in terms of resource utilization. This provides a strong business case for health care institutions to invest in targeted, evidence-based, interventional strategies that reduce the risk of postoperative complications. In addition, because the microbial flora of the skin, especially *staphylococcus*, provides a prominent reservoir of pathogens that cause SSIs, focused interventions aimed at mitigating this reservoir in preoperative patients represent a logical and effective risk reduction strategy.

THE YIN AND YANG OF PREADMISSION BATHING: A RATIONAL CONSIDERATION OF BENEFIT

Despite the prevalent clinical practice of preoperative bathing with CHG, clinicians are now confronted with a possible shift in both CDC and AORN recommendations. The current proposed draft recommendations for preoperative showering or cleansing are summarized in Table 1. The 2015 AORN “Guideline for preoperative patient skin antiseptic” and the CDC draft guideline both have expanded their recommendations for perioperative skin antiseptic from using CHG products to also using other cleansing products (eg, antimicrobial or non antimicrobial soap, other unspecified skin antiseptic). These expanded recommendations marginalize the practice of...
Some Final Thoughts
Surgeons’ Leadership Styles and Team Behavior in the Operating Room

Yue-Yung Hu, MD, MPH, Sarah Henrickson Parker, PhD, Stuart R Lipsitz, ScD, Alexander F Aratlaga, MD, MPH, SD, Sarah E Peyser, PhD, Katherina A Corso, MPH, Elmir M Roth, PhD, Steven J Yule, PhD, Caprice C Greenberg, MD, MPH, FACSM

BACKGROUND: The importance of leadership is recognized in surgery, but the specific impact of leadership style on team behavior is not well understood. In other industries, leadership is a well-characterized construct. One dominant theory proposes that transactional (task-focused) leaders achieve minimum standards and transformational (trans-oriented) leaders inspire performance beyond expectations.

STUDY DESIGN: We video-recorded 5 surgeons performing complex operations. Each surgeon was scored on the Multifactor Leadership Questionnaire, a validated method for scoring transformational and transactional leadership style, by an organizational psychologist and a surgeon researcher. Independent coders assessed surgeons’ leadership behaviors according to the Surgical Leadership Inventory and team behaviors (information sharing, cooperation, and social behavior). All coders were blinded. Leadership style (Multifactor Leadership Questionnaire) was correlated with surgeon behavior (Surgical Leadership Inventory) and team behavior using Poisson regression, controlling for time and the total number of behaviors, respectively.

RESULTS: All surgeons scored similarly on transformational leadership (range 2.38 to 2.69), but varied widely on transformational leadership (range 1.98 to 3.60). Each 1-point increase in transformational score corresponded to 5 times more information-sharing behaviors (p < 0.0001) and 5.4 times more voice behaviors (p = 0.0005) among the team. With each 1-point increase in transformational score, leaders displayed 10 times more supportive behaviors (p < 0.0001) and displayed poor behaviors 12.5 times less frequently (p < 0.0001). Excerpts of representative dialogues are included for illustration.

CONCLUSIONS: We provide a framework for evaluating surgeons’ leadership and its impact on team performance in the operating room. As in other fields, our data suggest that transformational leadership is associated with improved team behavior. Surgeon leadership development, therefore, has the potential to improve the efficiency and safety of operative care. (J Am Coll Surg 2015; 221:1–11. © 2015 by the American College of Surgeons. Published by Elsevier Inc. All rights reserved.)
Studies in Aseptic Technique
George Emerson Brewer, M.D.
JAMA April 24, 1915

Clean operative wound infection rate

<table>
<thead>
<tr>
<th>Year</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1895</td>
<td>39.0%</td>
</tr>
<tr>
<td>1897</td>
<td>7.0%</td>
</tr>
<tr>
<td>1899</td>
<td>3.2%</td>
</tr>
<tr>
<td>1912</td>
<td>2.4%</td>
</tr>
<tr>
<td>1913</td>
<td>1.6%</td>
</tr>
</tbody>
</table>

(...would bring the profession into disrepute)